Aune D, Norat T, Romundstad P, Vatten LJ (2013) Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol 28(11):845–858. https://doi.org/10.1007/s10654-013-9852-5
Article CAS PubMed Google Scholar
Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T (2016) Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. https://doi.org/10.1136/bmj.i2716
Article PubMed PubMed Central Google Scholar
Wang W, Li J, Chen X, Yu M, Pan Q, Guo L (2020) Whole grain food diet slightly reduces cardiovascular risks in obese/overweight adults: a systematic review and meta-analysis. BMC Cardiovasc Disord. https://doi.org/10.1186/s12872-020-01337-z
Article PubMed PubMed Central Google Scholar
Li Z, Yan H, Chen L, Wang Y, Liang J, Feng X, Hui S, Wang K (2022) Effects of whole grain intake on glycemic control: a meta-analysis of randomized controlled trials. J Diabetes Investig 13(11):1814–1824. https://doi.org/10.1111/jdi.13866
Article CAS PubMed PubMed Central Google Scholar
Giacco R, Costabile G, Della Pepa G, Anniballi G, Griffo E, Mangione A, Cipriano P, Viscovo D, Clemente G, Landberg R, Pacini G, Rivellese AA, Riccardi G (2014) A whole-grain cereal-based diet lowers postprandial plasma insulin and triglyceride levels in individuals with metabolic syndrome. Nutr Metab Cardiovasc Dis 24(8):837–844. https://doi.org/10.1016/j.numecd.2014.01.007
Article CAS PubMed Google Scholar
Vitaglione P, Mennella I, Ferracane R, Rivellese AA, Giacco R, Ercolini D, Gibbons SM, La Storia A, Gilbert JA, Jonnalagadda S, Thielecke F, Gallo MA, Scalfi L, Fogliano V (2015) Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr 101(2):251–261. https://doi.org/10.3945/ajcn.114.088120
Article CAS PubMed Google Scholar
Chambers ES, Preston T, Frost G, Morrison DJ (2018) Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 7(4):198–206. https://doi.org/10.1007/s13668-018-0248-8
Article CAS PubMed PubMed Central Google Scholar
Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt TM (2019) Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio. https://doi.org/10.1128/mBio.02566-18
Article PubMed PubMed Central Google Scholar
Brunkwall L, Orho-Melander M (2017) The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60(6):943–951. https://doi.org/10.1007/s00125-017-4278-3
Article CAS PubMed PubMed Central Google Scholar
Vetrani C, Costabile G, Luongo D, Naviglio D, Rivellese AA, Riccardi G et al (2016) Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition 32(2):217–221. https://doi.org/10.1016/j.nut.2015.08.006
Article CAS PubMed Google Scholar
Palmnäs-Bédard MSA, Costabile G, Vetrani C, Åberg S, Hjalmarsson Y, Dicksved J et al (2022) The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr 116(4):862–874. https://doi.org/10.1093/ajcn/nqac217
Article CAS PubMed PubMed Central Google Scholar
Mazibuko SE, Muller CJF, Joubert E, Beer D, Johnson R, Opoku AR et al (2013) Amelioration of palmitate-induced insulin resistance in C₂C₁₂ muscle cells by rooibos (Aspalathus Linearis). Phytomedicine. https://doi.org/10.1016/j.phymed.2013.03.018
Barrera JG, Sandoval DA, D’Alessio DA, Seeley RJ (2011) GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat Rev Endocrinol 7:507–516. https://doi.org/10.1038/nrendo.2011.77
Article CAS PubMed PubMed Central Google Scholar
Cong-jun Li. Butyrate: Food Sources, Functions and Health Benefits. Nova Science Publishers, Inc, New York 2014; ISBN: 978–1–63117–657–9.
Müller M, Hermes GDA, Canfora EE, Smidt H, Masclee AAM, Zoetendal EG et al (2020) Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. Am J Physiol Gastrointest Liver Physiol. https://doi.org/10.1152/ajpgi.00283.2019
Portincasa P, Bonfrate L, Vacca M et al (2022) Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci 23(3):1105. https://doi.org/10.3390/ijms23031105
Article CAS PubMed PubMed Central Google Scholar
Salamone D, Costabile G, Corrado A, Della Pepa G, Vitale M, Giacco R et al (2022) Circulating short-chain fatty acids in type 2 diabetic patients and overweight/obese individuals. Acta Diabetol 59(12):1653–1656. https://doi.org/10.1007/s00592-022-01934-8
Article CAS PubMed Google Scholar
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. https://doi.org/10.1038/nature11450
Article CAS PubMed Google Scholar
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103. https://doi.org/10.1038/nature12198
Article CAS PubMed Google Scholar
Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266. https://doi.org/10.1038/nature15766
Article CAS PubMed PubMed Central Google Scholar
Saha S, Day-Walsh P, Shehata E, Kroon PA (2021) Development and validation of a LC-MS/MS technique for the analysis of short chain fatty acids in tissues and biological fluids without derivatisation using isotope labelled internal standards. Molecules 26(21):6444. https://doi.org/10.3390/molecules26216444
Article CAS PubMed PubMed Central Google Scholar
Vinelli V, Biscotti P, Martini D, Del Bo’ C, Marino M, Meroño T et al (2022) Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: a systematic review. Nutrients 14(13):2559. https://doi.org/10.3390/nu14132559
Article CAS PubMed PubMed Central Google Scholar
Fock E, Parnova R (2023) Mechanisms of blood-brain barrier protection by microbiota-derived short-chain fatty acids. Cells 12(4):657. https://doi.org/10.3390/cells12040657
Article CAS PubMed PubMed Central Google Scholar
Fristedt R, Ruppert V, Trower T, Cooney J, Landberg R (2024) Quantitation of circulating short-chain fatty acids in small volume blood samples from animals and humans. Talanta 272:125743. https://doi.org/10.1016/j.talanta.2024.125743
Article CAS PubMed Google Scholar
Rahat-Rozenbloom S, Fernandes J, Cheng J, Gloor GB, Wolever TMS (2017) The acute effects of inulin and resistant starch on postprandial serum short-chain fatty acids and second-meal glycemic response in lean and overweight humans. Eur J Clin Nutr 71:227–233. https://doi.org/10.1038/ejcn.2016.248
Article CAS PubMed Google Scholar
Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2020.00025
Bah J, Heyndrickx M, Jonkers D, Mackie A, Millet S, Naghibi M et al (2023) Small intestine vs colon ecology and physiology: why it matters in probiotic administration. Cell Rep Med. https://doi.org/10.1016/j.xcrm.2023.101190
Comments (0)