Valdez JA, Brennan MT. Impact of oral cancer on quality of life. Dent Clin N Am. 2018;62:143–54. https://doi.org/10.1016/j.cden.2017.09.001
Yuwanati M, Gondivkar S, Sarode SC, Gadbail A, Desai A, Mhaske S, et al. Oral health-related quality of life in oral cancer patients: systematic review and meta-analysis. Future Oncol. 2021;17:979–90. https://doi.org/10.2217/fon-2020-0881
Article CAS PubMed Google Scholar
De Pablo A, Chen JK, Tsao CK. Trismus surgery and microsurgical reconstruction after oral cancer treatment. J Surg Oncol. 2023;127:929–36. https://doi.org/10.1002/jso.27217
Article CAS PubMed Google Scholar
Jehn P, Spalthoff S, Lentge F, Zeller AN, Tavassol F, Neuhaus MT, et al. Postoperative quality of life and therapy-related impairments of oral cancer in relation to time-distance since treatment. J Cancer Surviv. 2021;16:1366–78. https://doi.org/10.1007/s11764-021-01118-3
Wang S, Yin S, Zhang ZL, Su X, Xu ZF. Quality of life after oral cancer resection and free flap reconstruction. J Oral Maxillofac Surg. 2019;77:1724–32. https://doi.org/10.1016/j.joms.2019.02.029
Rebaudi F, De Rosa A, Greppi M, Pistilli R, Pucci R, Govoni FA, et al. A new method for oral cancer biomarkers detection with a non-invasive cyto-salivary sampling and rapid-highly sensitive ELISA immunoassay: a pilot study in humans. Front Immunol. 2023;14:1216107. https://doi.org/10.3389/fimmu.2023.1216107
Article CAS PubMed PubMed Central Google Scholar
Gioanni J, Fischel JL, Lambert JC, Demard F, Mazeau C, Zanghellini E, et al. Two new human tumor cell lines derived from squamous cell carcinomas of the tongue: establishment, characterization and response to cytotoxic treatment. Eur J Cancer Clin Oncol. 1988;24:1445–55. https://doi.org/10.1016/0277-5379(88)90335-5
Article CAS PubMed Google Scholar
Jablonska E, Iwaniuk A, Ratajczak-Wrona W, Grubczak K, Dziemianczyk-Pakiela D, Moniuszko M, et al. The promoting effect of neutrophil-derived BAFF molecule on the proliferation and life span of CAL-27 oral squamous carcinoma cells. Immunobiology. 2022;227:152247. https://doi.org/10.1016/j.imbio.2022.152247
Article CAS PubMed Google Scholar
Xu C, Yang HL, Yang YK, Pan L, Chen HY. Zinc-finger protein 750 mitigates malignant biological behavior of oral CSC-like cells enriched from parental CAL-27 cells. Oncol Lett. 2022;23:28. https://doi.org/10.3892/ol.2021.13146
Article CAS PubMed Google Scholar
Bais MV, Kukuruzinska M, Trackman PC. Orthotopic non-metastatic and metastatic oral cancer mouse models. Oral Oncol. 2015;51:476–82. https://doi.org/10.1016/j.oraloncology.2015.01.012
Article PubMed PubMed Central Google Scholar
Parshuram Satpute D, Shirwadkar U, Kumar Tharalla A, Dattatray Shinde S, Nikhil Vaidya G, Joshi S, et al. Discovery of fluorinated 2‑Styryl 4(3H)-quinazolinone as potential therapeutic hit for oral cancer. Bioorg Med Chem. 2023;81:117193. https://doi.org/10.1016/j.bmc.2023.117193
Article CAS PubMed Google Scholar
Chakraborty R, Vickery K, Darido C, Ranganathan S, Hu H. Bacterial antigens reduced the inhibition effect of capsaicin on Cal 27 oral cancer cell proliferation. Int J Mol Sci. 2021;22:8686. https://doi.org/10.3390/ijms22168686
Article CAS PubMed PubMed Central Google Scholar
Dong X, Zeng Y, Liu Y, You L, Yin X, Fu J, et al. Aloe‐emodin: a review of its pharmacology, toxicity, and pharmacokinetics. Phytother Res. 2020;34:270–81. https://doi.org/10.1002/ptr.6532
Article CAS PubMed Google Scholar
Lin ML, Lu YC, Chung JG, Li YC, Wang SG, SH NG, et al. Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway. Cancer Lett. 2010;291:46–58. https://doi.org/10.1016/j.canlet.2009.09.016
Article CAS PubMed Google Scholar
Shen F, Ge C, Yuan P. Aloe-emodin induces autophagy and apoptotic cell death in non-small cell lung cancer cells via Akt/mTOR and MAPK signaling. Eur J Pharmacol. 2020;886:173550. https://doi.org/10.1016/j.ejphar.2020.173550
Article CAS PubMed Google Scholar
Suboj P, Babykutty S, Srinivas P, Gopala S. Aloe emodin induces G2/M cell cycle arrest and apoptosis via activation of caspase-6 in human colon cancer cells. Pharmacology. 2012;89:91–98. https://doi.org/10.1159/000335659
Article CAS PubMed Google Scholar
Kumar GD, Siva B, Vadlamudi S, Bathula SR, Dutta H, Suresh Babu K. Design, synthesis, and biological evaluation of pyrazole-linked aloe emodin derivatives as potential anticancer agents. RSC Med Chem. 2021;12:791–6. https://doi.org/10.1039/D0MD00315H
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Wu Y, Sun L, Gu Y, Hu L. Synthesis and structure-activity relationship study of water-soluble carbazole sulfonamide derivatives as new anticancer agents. Eur J Med Chem. 2020;191:112181. https://doi.org/10.1016/j.ejmech.2020.112181
Article CAS PubMed Google Scholar
Sun H, Huang SY, Jeyakkumar P, Cai GX, Fang B, Zhou CH. Natural berberine-derived azolyl ethanols as new structural antibacterial agents against drug-resistant Escherichia coli. J Med Chem. 2022;65:436–59. https://doi.org/10.1021/acs.jmedchem.1c01592
Article CAS PubMed Google Scholar
Zheng S, Lavrenyuk K, Lamson NG, Fein KC, Whitehead KA, Dahl KN. Piperazine derivatives enhance epithelial cell monolayer permeability by increased cell force generation and loss of cadherin structures. ACS Biomater Sci Eng. 2019;6:367–74. https://doi.org/10.1021/acsbiomaterials.9b01660
Article CAS PubMed Google Scholar
Lamson NG, Cusimano G, Suri K, Zhang A, Whitehead KA. The pH of piperazine derivative solutions predicts their utility as transepithelial permeation enhancers. Mol Pharm. 2016;13:578–85. https://doi.org/10.1021/acs.molpharmaceut.5b00803
Article CAS PubMed Google Scholar
Shang H, Guo J, Wang P, Li L, Tian Y, Li X, et al. Design, synthesis and anti-inflammatory evaluation of aloe-emodin derivatives as potential modulators of Akt, NF-κB and JNK signaling pathways. Eur J Med Chem. 2022;238:114511. https://doi.org/10.1016/j.ejmech.2022.114511
Article CAS PubMed Google Scholar
Qiu X, Pei H, Ni H, Su Z, Li Y, Yang Z, et al. Design, synthesis, and anti-inflammatory study of novel N-heterocyclic substituted aloe-emodin derivatives. Chem Biol Drug Des. 2021;97:358–71. https://doi.org/10.1111/cbdd.13788
Article CAS PubMed Google Scholar
Guesmi H, Kraim JB, Alatrache A, Holzgrabe U. Hydrogen-deuterium (H/D) exchange reaction of acebutolol hydrochloride in D2O and CD3OD solution. Pharmazie. 2022;77:217–23. https://doi.org/10.1691/ph.2022.2419
Article CAS PubMed Google Scholar
Shi DH, Huang W, Li C, Liu YW, Wang SF. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors. Eur J Med Chem. 2014;75:289–96. https://doi.org/10.1016/j.ejmech.2014.01.058
Article CAS PubMed Google Scholar
Thimmegowda NR, Park C, Shwetha B, Sakchaisri K, Liu K, Hwang J, et al. Synthesis and anti-tumor activity of natural compound aloe emodin derivatives. Chem Biol Drug Des. 2015;85:638–44. https://doi.org/10.1111/cbdd.12448
Article CAS PubMed Google Scholar
Shang H, Hu Y, Li J, Li L, Tian Y, Li X, et al. The synthesis and biological evaluation of aloe-emodin-coumarin hybrids as potential anti-tumor agents. Molecules. 2022;27:6153. https://doi.org/10.3390/molecules27196153
Article CAS PubMed PubMed Central Google Scholar
Dileep Kumar G, Siva B, Ashwini K, Vinod Kumar J, Ramalingam V, Sai Balaji A, et al. Design, synthesis, cytotoxic, and anti-inflammatory activities of some novel analogues of aloe-emodin isolated from the rhizomes of Rheum emodi. Nat Prod Res. 2023;37:1511–7. https://doi.org/10.1080/14786419.2021.2024531
Article CAS PubMed Google Scholar
Zhang Q, Wang J, Lan F, Zhai H, Li F, Ma T, et al. Synthesis and DNA interaction of aloe-emodin α-amino phosphate derivatives. J Mol Struct. 2023;1279:134950. https://doi.org/10.1016/j.molstruc.2023.134950
Fang Z, Zhang B, Xing W, Yu H, Xing C, Gong N, et al. An evolving role of aqueous piperazine to improve the solubility of non-steroidal anti-inflammatory drugs. J Pharm Sci. 2022;111:2839–47. https://doi.org/10.1016/j.xphs.2022.05.009
Article CAS PubMed Google Scholar
Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23:74–88. https://doi.org/10.1038/s41580-021-00404-3
Article CAS PubMed Google Scholar
Tu HY, Huang AM, Teng CH, Hour TC, Yang SC, Pu YS, et al. Anthraquinone derivatives induce G2/M cell cycle arrest and apoptosis in NTUB1 cells. Bioorg Med Chem. 2011;19:5670–8. https://doi.org/10.1016/j.bmc.2011.07.021
Comments (0)