Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.
Dueñas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain 2006;129:1357–70.
Susan Perlman MD. Hereditary ataxia overview. GeneReviews ® [Internet]. Initial posting: 1998, Last Update: 2022.
Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype—a review. Clin Genet. 2016;90:305–14.
Article CAS PubMed Google Scholar
Tsuji S, Onodera O, Goto J, Nishizawa M. Study Group on Ataxic Diseases. Sporadic ataxias in Japan – a population-based epidemiological study. Cerebellum. 2008;7:189–97.
Article CAS PubMed Google Scholar
Maruyama H, Izumi Y, Morino H, et al. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Am J Med Genet. 2002;114:578–83.
Sasaki H, Yabe I, Yamashita I, Tashiro K. Prevalence of triplet repeat expansion in ataxia patients from Hokkaido, the northernmost island of Japan. J Neurol Sci. 2000;175:45–51.
Article CAS PubMed Google Scholar
Basri R, Yabe I, Soma H, Sasaki H. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families. J Hum Genet. 2007;52:848–55.
Pellerin D, Danzi MC, Wilke C, Renaud M, Fazal S, Dicaire MJ, et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N Engl J Med. 2023;388:128–41.
Article CAS PubMed Google Scholar
Rafehi H, Read J, Szmulewicz DJ, Davies KC, et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genet. 2023;110:105–19.
Article CAS PubMed Google Scholar
Yabe I, Sasaki H, Matsuura T, Takada A, Wakisaka A, Suzuki Y, et al. SCA6 mutation analysis in a large cohort of the Japanese patients with late-onset pure cerebellar ataxia. J Neurol Sci. 1998;156:89–95.
Miyatake S, Koshimizu E, Fujita A, Doi H, et al. Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom Med. 2022;7:62.
Article CAS PubMed PubMed Central Google Scholar
Rafehi H, Read J, Szmulewicz DJ, et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA27B/ATX-FGF14. Am J Hum Genet. 2023;110:1018.
Article CAS PubMed PubMed Central Google Scholar
Stevanin G, Dürr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet. 2000;8:4–18.
Article CAS PubMed Google Scholar
Onodera Y, Aoki M, Mizuno H, Warita H, Shiga Y, Itoyama Y. Clinical features of chromosome 16q22.1 linked autosomal dominant cerebellar ataxia in Japanese. Neurology. 2006;67:1300–2.
Article CAS PubMed Google Scholar
Nozaki H, Ikeuchi T, Kawakami A, Kimura A, Koide R, Tsuchiya M, et al. Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia (AD-SCA) and frequency analysis of AD-SCA in the Japanese population. Mov Disord. 2007;22:857–62.
Hengel H, Pellerin D, Wilke C, et al. As frequent as polyglutamine spinocerebellar ataxias: SCA27B in a large German autosomal dominant ataxia cohort. Mov Disord. 2023;38:1557–8.
Comments (0)