ACMG secondary findings in the Brazilian rare genomes project: insights from 5402 genome sequencing

Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74. https://doi.org/10.1038/gim.2013.73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, Chung WK, et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023;25:100866. https://doi.org/10.1016/j.gim.2023.100866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elfatih A, Saad C, The Qatar Genome Program Research Consortium, Qatar Genome Project Management, Ismail S, Al-Muftah W, et al. Analysis of 14,392 whole genomes reveals 3.5% of Qataris carry medically actionable variants. Eur J Hum Genet. 2024;32:1465–73. https://doi.org/10.1038/s41431-024-01656-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon AS, Zouk H, Venner E, Eng CM, Funke BH, Amendola LM, et al. Frequency of genomic secondary findings among 21,915 eMERGE network participants. Genet Med. 2020;22:1470–7. https://doi.org/10.1038/s41436-020-0810-9.

Article  PubMed Central  Google Scholar 

Saeidian AH, March ME, Youssefian L, Watson DJ, Bhandari E, Wang X, et al. Secondary ACMG and non-ACMG genetic findings in a multiethnic cohort of 16,713 pediatric participants. Genet Med. 2024;26:101225. https://doi.org/10.1016/j.gim.2024.101225.

Article  CAS  PubMed  Google Scholar 

Quaio CRDC, Moreira CM, Novo-Filho GM, Sacramento-Bobotis PR, Groenner Penna M, Perazzio SF, et al. Diagnostic power and clinical impact of exome sequencing in a cohort of 500 patients with rare diseases. Am J Med Genet C Semin Med Genet. 2020;184:955–64. https://doi.org/10.1002/ajmg.c.31860.

Article  CAS  PubMed  Google Scholar 

Naslavsky MS, Yamamoto GL, Almeida TF, Ezquina SAM, Sunaga DY, Pho N, et al. Exomic variants of an elderly cohort of Brazilians in the ABraOM database. Hum Mutat. 2017;38:751–63. https://doi.org/10.1002/humu.23220.

Article  CAS  PubMed  Google Scholar 

Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T, et al. Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil. Nat Commun. 2022;13. https://doi.org/10.1038/s41467-022-28648-3

Coelho AVC, Mascaro-Cordeiro B, Lucon DR, Nóbrega MS, Reis RS, de Alexandre RB, et al. The Brazilian Rare Genomes Project: Validation of whole genome sequencing for rare diseases diagnosis. Front Mol Biosci. 2022;9. https://doi.org/10.3389/fmolb.2022.821582

den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37:564–9. https://doi.org/10.1002/humu.22981.

Article  CAS  Google Scholar 

McGowan-Jordan J, Hastings RJ, Moore S. ISCN 2020: an international system for human cytogenomic nomenclature. Cytogenetic Genome Res. 2020:160;7–8.

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30.

Article  PubMed  PubMed Central  Google Scholar 

Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen. Genet Med. 2020;22:245–57. https://doi.org/10.1038/s41436-019-0686-8.

Article  PubMed  Google Scholar 

Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19:249–55. https://doi.org/10.1038/gim.2016.190.

Article  PubMed  Google Scholar 

Miller DT, Lee K, Chung WK, Gordon AS, Herman GE, Klein TE, et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:1381–90. https://doi.org/10.1038/s41436-021-01172-3.

Article  PubMed  Google Scholar 

Miller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, Chung WK, et al. ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2022;24:1407–14. https://doi.org/10.1016/j.gim.2022.04.006.

Article  CAS  PubMed  Google Scholar 

Nolan J, Buchanan J, Taylor J, Almeida J, Bedenham T, Blair E, et al. Secondary (additional) findings from the 100,000 Genomes Project: disease manifestation, health care outcomes, and costs of disclosure. Genet Med. 2024;26:101051. https://doi.org/10.1016/j.gim.2023.101051.

Article  CAS  PubMed  Google Scholar 

Kim Y, Kim J-M, Cho H-W, Park H-Y, Park M-H. Frequency of actionable secondary findings in 7472 Korean genomes derived from the National Project of Bio Big Data pilot study. Hum Genet. 2023;142:1561–9. https://doi.org/10.1007/s00439-023-02592-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aloraini T, Alsubaie L, Alasker S, Al Muitiri A, Alswaid A, Eyiad W, et al. The rate of secondary genomic findings in the Saudi population. Am J Med Genet A. 2022;188:83–88. https://doi.org/10.1002/ajmg.a.62491.

Article  CAS  PubMed  Google Scholar 

Johnston JJ, Brennan M-L, Radenbaugh B, Yoo SJ, Hernandez SM, NHGRI Reverse Phenotyping Core, et al. The ACMG SF v3.0 gene list increases returnable variant detection by 22% when compared with v2.0 in the ClinSeq cohort. Genet Med. 2022;24:736–43. https://doi.org/10.1016/j.gim.2021.11.012.

Article  CAS  PubMed  Google Scholar 

Yamashita T, Hamidi Asl K, Yazaki M, Benson MD. A prospective evaluation of the transthyretin Ile122 allele frequency in an African-American population. Amyloid. 2005;12:127–30. https://doi.org/10.1080/13506120500107162.

Article  CAS  PubMed  Google Scholar 

Censo 2022. Gov.br. 2022. https://www.ibge.gov.br/estatisticas/sociais/trabalho/22827-censo-demografico-2022.html. Accessed 28 Jan2025.

Skrahin A, Cheema HA, Hussain M, Rana NN, Rehman KU, Kumar R, et al. Secondary findings in a large Pakistani cohort tested with whole genome sequencing. Life Sci Alliance. 2023;6:e202201673. https://doi.org/10.26508/lsa.202201673.

Article  PubMed  PubMed Central  Google Scholar 

Garritano S, Gemignani F, Palmero EI, Olivier M, Martel-Planche G, Le Calvez-Kelm F, et al. Detailed haplotype analysis at the TP53 locus in p.R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Hum Mutat. 2010;31:143–50. https://doi.org/10.1002/humu.21151.

Article  CAS  PubMed  Google Scholar 

Corrêa TS, Asprino PF, de Oliveira ESC, Leite ACR, Weis L, Achatz MI, et al. TP53 p.R337H germline variant among women at risk of hereditary breast cancer in a public health system of Midwest Brazil. Genes. 2024;15:928 https://doi.org/10.3390/genes15070928.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunter JE, Jenkins CL, Bulkley JE, Gilmore MJ, Lee K, Pak CM, et al. ClinGen’s Pediatric Actionability Working Group: clinical actionability of secondary findings from genome-scale sequencing in children and adolescents. Genet Med. 2022;24:1328–35. https://doi.org/10.1016/j.gim.2022.02.019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Virgens CSDAS. Variantes genéticas nos genes BRCA1 e BRCA2 em uma população da Bahia. Ufba.br. 2023. https://biologia.ufba.br/sites/biologia.ufba.br/files/tcc_final_-_cleiton_santos_das_virgens_.pdf. Accessed 28 Jan 2025.

Palmero EI, Carraro DM, Alemar B, Moreira MAM, Ribeiro-Dos-Santos Â, Abe-Sandes K, et al. The germline mutational landscape of BRCA1 and BRCA2 in Brazil. Sci Rep. 2018;8:9188. https://doi.org/10.1038/s41598-018-27315-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazzonetto P, Milanezi F, D’Andrea M, Martins S, Monfredini PM, Dos Santos Silva J, et al. BRCA1 and BRCA2 germline mutation analysis from a cohort of 1267 patients at high risk for breast cancer in Brazil. Breast Cancer Res Treat. 2023;199:127–36. https://doi.org/10.1007/s10549-023-06892-5.

Article  CAS  PubMed  Google Scholar 

de Oliveira JM, Zurro NB, Coelho AVC, Caraciolo MP, de Alexandre RB, Cervato MC, et al. The genetics of hereditary cancer risk syndromes in Brazil: a comprehensive analysis of 1682 patients. Eur J Hum Genet. 2022;30:818–23. https://doi.org/10.1038/s41431-022-01098-7.

Article  CAS  PubMed 

Comments (0)

No login
gif