Wosnitzer M, Goldstein M, Hardy MP. Review of azoospermia. Spermatogenesis. 2014;4:e28218.
Article PubMed PubMed Central Google Scholar
Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5:544–53.
Corona G, Minhas S, Giwercman A, Bettocchi C, Dinkelman-Smit M, Dohle G, et al. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: a systematic review and meta-analysis. Hum Reprod Update. 2019;25:733–57.
Hu Z, Li Z, Yu J, Tong C, Lin Y, Guo X, et al. Association analysis identifies new risk loci for non-obstructive azoospermia in Chinese men. Nat Commun. 2014;5:3857.
Article CAS PubMed Google Scholar
Grey C, de Massy B. Chromosome organization in early meiotic prophase. Front Cell Dev Biol. 2021;9:688878.
Article PubMed PubMed Central Google Scholar
Borde V, de Massy B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr Opin Genet Dev. 2013;23:147–55.
Article CAS PubMed Google Scholar
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, et al. Meiotic recombination: insights into its mechanisms and its role in human reproduction with a special focus on non-obstructive azoospermia. Hum Reprod Update. 2022;28:763–97.
Article CAS PubMed Google Scholar
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod. 2018;99:112–26.
He WB, Tu CF, Liu Q, Meng LL, Yuan SM, Luo AX, et al. DMC1 mutation that causes human non-obstructive azoospermia and premature ovarian insufficiency identified by whole-exome sequencing. J Med Genet. 2018;55:198–204.
Article CAS PubMed Google Scholar
Li P, Ji Z, Zhi E, Zhang Y, Han S, Zhao L, et al. Novel bi-allelic MSH4 variants causes meiotic arrest and non-obstructive azoospermia. Reprod Biol Endocrinol. 2022;20:21.
Article CAS PubMed PubMed Central Google Scholar
Ji Z, Yao C, Yang C, Huang C, Zhao L, Han X, et al. Novel hemizygous mutations of TEX11 cause meiotic arrest and non-obstructive azoospermia in Chinese Han population. Front Genet. 2021;12:741355.
Article CAS PubMed PubMed Central Google Scholar
Xu S, Zhao J, Gao F, Zhang Y, Luo J, Zhang C, et al. A bi-allelic REC114 loss-of-function variant causes meiotic arrest and nonobstructive azoospermia. Clin Genet. 2024;105:440–5.
Article CAS PubMed Google Scholar
Zhao J, Ji Z, Meng G, Luo J, Zhang Y, Ou N, et al. Identification of a missense variant of MND1 in meiotic arrest and non-obstructive azoospermia. J Hum Genet. 2023;68:729–35.
Article CAS PubMed Google Scholar
Tang D, Lv M, Gao Y, Cheng H, Li K, Xu C, et al. Novel variants in helicase for meiosis 1 lead to male infertility due to non-obstructive azoospermia. Reprod Biol Endocrinol. 2021;19:129.
Article CAS PubMed PubMed Central Google Scholar
Yao C, Yang C, Zhao L, Li P, Tian R, Chen H, et al. Bi-allelic SHOC1 loss-of-function mutations cause meiotic arrest and non-obstructive azoospermia. J Med Genet. 2021;58:679–86.
Article CAS PubMed Google Scholar
Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369–84.
Article CAS PubMed Google Scholar
Choi E, Han C, Park I, Lee B, Jin S, Choi H, et al. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis. J Biol Chem. 2008;283:35283–94.
Article CAS PubMed PubMed Central Google Scholar
Horisawa-Takada Y, Kodera C, Takemoto K, Sakashita A, Horisawa K, Maeda R, et al. Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nat Commun. 2021;12:3184.
Article CAS PubMed PubMed Central Google Scholar
Oura S, Koyano T, Kodera C, Horisawa-Takada Y, Matsuyama M, Ishiguro KI, et al. KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice. PLoS Genet. 2021;17:e1009412.
Article CAS PubMed PubMed Central Google Scholar
Fang K, Li Q, Wei Y, Zhou C, Guo W, Shen J, et al. Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics. Mol Cell Proteom. 2021;20:100014.
Zhang Y, Huang X, Xu Q, Yu M, Shu M, Shan S, et al. Homozygous nonsense variants of KCTD19 cause male infertility in humans and mice. J Genet Genomics. 2023;50:615–9.
Liu J, Rahim F, Zhou J, Fan S, Jiang H, Yu C, et al. Loss-of-function variants in KCTD19 cause non-obstructive azoospermia in humans. iScience. 2023;26:107193.
Article CAS PubMed PubMed Central Google Scholar
Wang W, Su L, Meng L, He J, Tan C, Yi D, et al. Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia. Hum Reprod. 2023;38:1399–411.
Article CAS PubMed Google Scholar
Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82.
Article CAS PubMed Google Scholar
Kishore S, Khanna A, Stamm S. Rapid generation of splicing reporters with pSpliceExpress. Gene. 2008;427:104–10.
Article CAS PubMed PubMed Central Google Scholar
Li Y, Meng R, Li S, Gu B, Xu X, Zhang H, et al. The ZFP541-KCTD19 complex is essential for pachytene progression by activating meiotic genes during mouse spermatogenesis. J Genet Genomics. 2022;49:1029–41.
Article CAS PubMed Google Scholar
Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, et al. Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Biochem J. 2017;474:3747–61.
Article CAS PubMed Google Scholar
Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL, et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell. 2003;12:1551–64.
Article CAS PubMed Google Scholar
Minor DL, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, et al. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell. 2000;102:657–70.
Article CAS PubMed Google Scholar
Pintard L, Willems A, Peter M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 2004;23:1681–7.
Comments (0)