Bi-allelic KCTD19 variants associated with meiotic arrest and non-obstructive azoospermia in humans

Wosnitzer M, Goldstein M, Hardy MP. Review of azoospermia. Spermatogenesis. 2014;4:e28218.

Article  PubMed  PubMed Central  Google Scholar 

Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5:544–53.

Article  PubMed  Google Scholar 

Corona G, Minhas S, Giwercman A, Bettocchi C, Dinkelman-Smit M, Dohle G, et al. Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: a systematic review and meta-analysis. Hum Reprod Update. 2019;25:733–57.

Article  PubMed  Google Scholar 

Hu Z, Li Z, Yu J, Tong C, Lin Y, Guo X, et al. Association analysis identifies new risk loci for non-obstructive azoospermia in Chinese men. Nat Commun. 2014;5:3857.

Article  CAS  PubMed  Google Scholar 

Grey C, de Massy B. Chromosome organization in early meiotic prophase. Front Cell Dev Biol. 2021;9:688878.

Article  PubMed  PubMed Central  Google Scholar 

Borde V, de Massy B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr Opin Genet Dev. 2013;23:147–55.

Article  CAS  PubMed  Google Scholar 

Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, et al. Meiotic recombination: insights into its mechanisms and its role in human reproduction with a special focus on non-obstructive azoospermia. Hum Reprod Update. 2022;28:763–97.

Article  CAS  PubMed  Google Scholar 

Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod. 2018;99:112–26.

Article  PubMed  Google Scholar 

He WB, Tu CF, Liu Q, Meng LL, Yuan SM, Luo AX, et al. DMC1 mutation that causes human non-obstructive azoospermia and premature ovarian insufficiency identified by whole-exome sequencing. J Med Genet. 2018;55:198–204.

Article  CAS  PubMed  Google Scholar 

Li P, Ji Z, Zhi E, Zhang Y, Han S, Zhao L, et al. Novel bi-allelic MSH4 variants causes meiotic arrest and non-obstructive azoospermia. Reprod Biol Endocrinol. 2022;20:21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji Z, Yao C, Yang C, Huang C, Zhao L, Han X, et al. Novel hemizygous mutations of TEX11 cause meiotic arrest and non-obstructive azoospermia in Chinese Han population. Front Genet. 2021;12:741355.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu S, Zhao J, Gao F, Zhang Y, Luo J, Zhang C, et al. A bi-allelic REC114 loss-of-function variant causes meiotic arrest and nonobstructive azoospermia. Clin Genet. 2024;105:440–5.

Article  CAS  PubMed  Google Scholar 

Zhao J, Ji Z, Meng G, Luo J, Zhang Y, Ou N, et al. Identification of a missense variant of MND1 in meiotic arrest and non-obstructive azoospermia. J Hum Genet. 2023;68:729–35.

Article  CAS  PubMed  Google Scholar 

Tang D, Lv M, Gao Y, Cheng H, Li K, Xu C, et al. Novel variants in helicase for meiosis 1 lead to male infertility due to non-obstructive azoospermia. Reprod Biol Endocrinol. 2021;19:129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao C, Yang C, Zhao L, Li P, Tian R, Chen H, et al. Bi-allelic SHOC1 loss-of-function mutations cause meiotic arrest and non-obstructive azoospermia. J Med Genet. 2021;58:679–86.

Article  CAS  PubMed  Google Scholar 

Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369–84.

Article  CAS  PubMed  Google Scholar 

Choi E, Han C, Park I, Lee B, Jin S, Choi H, et al. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis. J Biol Chem. 2008;283:35283–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horisawa-Takada Y, Kodera C, Takemoto K, Sakashita A, Horisawa K, Maeda R, et al. Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nat Commun. 2021;12:3184.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oura S, Koyano T, Kodera C, Horisawa-Takada Y, Matsuyama M, Ishiguro KI, et al. KCTD19 and its associated protein ZFP541 are independently essential for meiosis in male mice. PLoS Genet. 2021;17:e1009412.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang K, Li Q, Wei Y, Zhou C, Guo W, Shen J, et al. Prediction and validation of mouse meiosis-essential genes based on spermatogenesis proteome dynamics. Mol Cell Proteom. 2021;20:100014.

Article  CAS  Google Scholar 

Zhang Y, Huang X, Xu Q, Yu M, Shu M, Shan S, et al. Homozygous nonsense variants of KCTD19 cause male infertility in humans and mice. J Genet Genomics. 2023;50:615–9.

Article  PubMed  Google Scholar 

Liu J, Rahim F, Zhou J, Fan S, Jiang H, Yu C, et al. Loss-of-function variants in KCTD19 cause non-obstructive azoospermia in humans. iScience. 2023;26:107193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Su L, Meng L, He J, Tan C, Yi D, et al. Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia. Hum Reprod. 2023;38:1399–411.

Article  CAS  PubMed  Google Scholar 

Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.

Article  PubMed  Google Scholar 

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82.

Article  CAS  PubMed  Google Scholar 

Kishore S, Khanna A, Stamm S. Rapid generation of splicing reporters with pSpliceExpress. Gene. 2008;427:104–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Meng R, Li S, Gu B, Xu X, Zhang H, et al. The ZFP541-KCTD19 complex is essential for pachytene progression by activating meiotic genes during mouse spermatogenesis. J Genet Genomics. 2022;49:1029–41.

Article  CAS  PubMed  Google Scholar 

Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, et al. Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Biochem J. 2017;474:3747–61.

Article  CAS  PubMed  Google Scholar 

Ahmad KF, Melnick A, Lax S, Bouchard D, Liu J, Kiang CL, et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell. 2003;12:1551–64.

Article  CAS  PubMed  Google Scholar 

Minor DL, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, et al. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell. 2000;102:657–70.

Article  CAS  PubMed  Google Scholar 

Pintard L, Willems A, Peter M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 2004;23:1681–7.

Article  CAS 

Comments (0)

No login
gif