Nova A, Maseras F (2013) Enantioselective synthesis. In: Comprehensive inorganic chemistry ii (second edition): from elements to applications, pp. 807–831
Genheden S, Reymer A, Saenz-Méndez P, Eriksson LA (2017) Computational chemistry and molecular modelling basics
Polanski J, Gasteiger J (2016) Computer representation of chemical compounds. J Puzyn T Eds. https://doi.org/10.1007/978-94-007-6169-8_50-1
Gerlich M, Neumann S (2013) Metfusion: integration of compound identification strategies. J Mass Spectrom 48(3):291–298
Article CAS PubMed Google Scholar
Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinf 11(1):1–12
Peironcely JE, Rojas-Chertó M, Tas A, Vreeken R, Reijmers T, Coulier L, Hankemeier T (2013) Automated pipeline for de novo metabolite identification using mass-spectrometry-based metabolomics. Anal Chem 85(7):3576–3583
Article CAS PubMed Google Scholar
Snyder HD, Kucukkal TG (2021) Computational chemistry activities with avogadro and orca. J Chem Educ 98(4):1335–1341. https://doi.org/10.1021/acs.jchemed.0c00959
Kotha RR, Natarajan S, Wang D, Luthria DL (2019) Compositional analysis of non-polar and polar metabolites in 14 soybeans using spectroscopy and chromatography tools. Foods 8(11):557
Article CAS PubMed PubMed Central Google Scholar
Kaleta M, Oklestkova J, Novák O, Strnad M (2021) Analytical methods for the determination of neuroactive steroids. Biomolecules 11(4):553
Article CAS PubMed PubMed Central Google Scholar
Vandierendonck A (2017) A comparison of methods to combine speed and accuracy measures of performance: a rejoinder on the binning procedure. Behav Res Methods 49(2):653–673
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK (2021) Artificial intelligence in drug discovery and development. Drug Discov Today 26(1):80
Article CAS PubMed Google Scholar
Udayakumar V, Periandy S, Ramalingam S (2011) Experimental (ft-ir and ft-raman) and theoretical (hf and dft) investigation, ir intensity, raman activity and frequency estimation analyses on 1-bromo-4-chlorobenzene. Spectrochim Acta A Mol Biomol Spectrosc 79(5):920–927. https://doi.org/10.1016/j.saa.2011.03.049
Article CAS PubMed Google Scholar
Guideline, I. H. T. (2017). Technical and regulatory considerations for pharmaceutical product lifecycle management q12. Paper presented at the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.
FDA. (2011). Food drug administration. Pharmaceutical quality system (ich 10) conference. Accessed Jul 2021 from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q10-pharmaceutical-quality-system
Patel KY, Dedania ZR, Dedania RR, Patel U (2021) Qbd approach to hplc method development and validation of ceftriaxone sodium. Future J Pharm Sci 7(1):141. https://doi.org/10.1186/s43094-021-00286-4
Peraman R, Bhadraya K, Padmanabha Reddy Y (2015) Analytical quality by design: a tool for regulatory flexibility and robust analytics. Int J Anal Chem. https://doi.org/10.1155/2015/868727
Article PubMed PubMed Central Google Scholar
Agatonovic-Kustrin S, Zecevic M, Zivanovic L, Tucker I (1998) Application of artificial neural networks in HPLC method development. J Pharm Biomed Anal 17(1):69–76
Article CAS PubMed Google Scholar
Webb R, Doble P, Dawson M (2009) Optimisation of hplc gradient separations using artificial neural networks (anns): application to benzodiazepines in post-mortem samples. J Chromatogr B 877(7):615–620
Chatterjee S (2013) QBD considerations for analytical methods—FDA perspective. Paper presented at the US IFPAC annual meeting
Burnett K, Harrington B, Graul T, Fanalis S, Haddad P, Poole C (2013) Qbd in liquid chromatographic applications. Elsevier
Kaliszan R (2000) Chapter 11 recent advances in quantitative structure-retention relationships (QSRR). In: Valkó K (ed) Handbook of analytical separations. Elsevier Science, pp 503–534
Héberger K (2007) Quantitative structure–(chromatographic) retention relationships. J Chromatogr A 1158(1):273–305. https://doi.org/10.1016/j.chroma.2007.03.108
Article CAS PubMed Google Scholar
Amos RIJ, Haddad PR, Szucs R, Dolan JW, Pohl CA (2018) Molecular modeling and prediction accuracy in quantitative structure-retention relationship calculations for chromatography. TrAC, Trends Anal Chem 105:352–359. https://doi.org/10.1016/j.trac.2018.05.019
De Matteis CI, Simpson DA, Doughty SW, Euerby MR, Shaw PN, Barrett DA (2010) Chromatographic retention behaviour of n-alkylbenzenes and pentylbenzene structural isomers on porous graphitic carbon and octadecyl-bonded silica studied using molecular modelling and QSRR. J Chromatogr A 1217(44):6987–6993
MacNeil JD (2012) Analytical difficulties facing today’s regulatory laboratories: issues in method validation. Drug Test Anal 4(Suppl 1):17–24. https://doi.org/10.1002/dta.1358
Article CAS PubMed Google Scholar
Volta ESL, Gonçalves R, Menezes JC, Ramos A (2021) Analytical method lifecycle management in pharmaceutical industry: a review. AAPS PharmSciTech 22(3):128. https://doi.org/10.1208/s12249-021-01960-9
Yang W, Qian W, Yuan Z, Chen B (2022) Perspectives on the flexibility analysis for continuous pharmaceutical manufacturing processes. Chin J Chem Eng 41:29–41. https://doi.org/10.1016/j.cjche.2021.12.005
Article CAS PubMed Google Scholar
Akash MSH, Rehman K (2020) Introduction to pharmaceutical analysis. In: Akash MSH, Rehman K (eds) Essentials of pharmaceutical analysis. Springer Nature Singapore, Singapore, pp 1–18
Cadinoska M, Popstefanova N, Ilievska M, Karadzinska E, Jovanoska M, Glavas Dodov M (2019) Trending and out-of-trend results in pharmaceutical industry. Maced Pharm Bull 65:39–60. https://doi.org/10.33320/maced.pharm.bull.2019.65.01.005
Appleton T, Bryan P, Contos D et al (2012) Nonclinical dose formulation: out of specification investigations. Aaps J 14(3):523–529. https://doi.org/10.1208/s12248-012-9347-4
Article PubMed PubMed Central Google Scholar
Martinez Calatayud J (2005) Spectrophotometry | pharmaceutical applications. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science, 2nd edn. Elsevier, Oxford, pp 373–383
Simundic AM, Lippi G (2012) Preanalytical phase–a continuous challenge for laboratory professionals. Biochem Med 22(2):145–149. https://doi.org/10.11613/bm.2012.017
Paré GKS (2017) Handbook of ehealth evaluation: an evidence-based approach. University of Victoria, Victoria
Redrup MJ, Igarashi H, Schaefgen J et al (2016) Sample management: recommendation for best practices and harmonization from the global bioanalysis consortium harmonization team. Aaps J 18(2):290–293. https://doi.org/10.1208/s12248-016-9869-2
Article PubMed PubMed Central Google Scholar
Piskunov DP, Danilova LA, Pushkin AS, Rukavishnikova SA (2020) Influence of exogenous and endogenous factors on the quality of the preanalytical stage of laboratory tests (review of literature). Klin Lab Diagn 65(12):778–784. https://doi.org/10.18821/0869-2084-2020-65-12-778-784
Article CAS PubMed Google Scholar
Krčmová LK, Melichar B, Švec F (2020) Chromatographic methods development for clinical practice: requirements and limitations. Clin Chem Lab Med 58(11):1785–1793. https://doi.org/10.1515/cclm-2020-0517
Article CAS PubMed Google Scholar
Patil R, Bhaskar R, Ola M, Pingale D, Chalikwar SS (2019) Bioanalytical method development and method validation in human plasma by using LC MS/MS
Khamis MM, Adamko DJ, El-Aneed A (2021) Strategies and challenges in method development and validation for the absolute quantification of endogenous biomarker metabolites using liquid chromatography-tandem mass spectrometry. Mass Spectrom Rev 40(1):31–52. https://doi.org/10.1002/mas.21607
Article CAS PubMed Google Scholar
Ragoisha G (2020) Challenge for electrochemical impedance spectroscopy in the dynamic world. J Solid State Electrochem 24:2171–2172
Pierce KM, Trinklein TJ, Nadeau JS, Synovec RE (2021) Chapter 20 - data analysis methods for gas chromatography. In: Poole CF (ed) Gas chromatography, 2nd edn. Elsevier, Amsterdam, pp 525–546
Oliveri P, Malegori C, Simonetti R, Casale M (2019) The impact of signal pre-processing on the final interpretation of analytical outcomes - a tutorial. Anal Chim Acta 1058:9–17. https://doi.org/10.1016/j.aca.2018.10.055
Article CAS PubMed Google Scholar
Cobas C (2020) NMR signal processing, prediction, and structure verification with machine learning techniques. Magn Reson Chem 58(6):512–519
Article CAS PubMed Google Scholar
Ito K, Xu X, Kikuchi J (2021) Improved prediction of carbonless NMR spectra by the machine learning of theoretical and fragment descriptors for environmental mixture analysis. Anal Chem 93(18):6901–6906
Article CAS PubMed Google Scholar
Kern S, Liehr S, Wander L, Bornemann-Pfeiffer M, Müller S, Maiwald M, Kowarik S (2020) Artificial neural networks for quantitative online NMR spectroscopy. Anal Bioanal Chem 412(18):4447–4459
Comments (0)