Green synthesis, spectroscopic characterization, and biological studies of some fluoroimine-based oxovanadium(V) complexes

Eftekhari S, Foroughifar N, Hallajian S, Khajeh-Amiri A (2020) Green synthesis of some novel imidazole schiff base derivatives under microwave irradiation/reflux conditions and evaluations of the antibacterial activity. Current Microwave Chem 7(3):207–215. https://doi.org/10.2174/2213335607999200520124245

Article  CAS  Google Scholar 

Kapila A, Kaur H, Puri JK (2016) Green synthesis, characterization, and DFT calculations of diorganotin (IV) complexes of Schiff bases. Phosphorus Sulfur Silicon Relat Elem 191(8):1142–1147. https://doi.org/10.1080/10426507.2016.1149712

Article  CAS  Google Scholar 

Al-Hiyari BA, Shakya AK, Naik RR, Bardaweel S (2021) Microwave-assisted synthesis of Schiff bases of isoniazid and evaluation of their anti-proliferative and antibacterial activities. Molbank. https://doi.org/10.3390/M1189

Article  Google Scholar 

Cantón-Díaz AM, Muñoz-Flores BM, Moggio I, Arias E, Turlakov G, Del Angel-Mosqueda C, Jiménez-Pérez VM (2019) Molecular structures, DFT studies and their photophysical properties in solution and solid state. Microwave-assisted multicomponent synthesis of organotin bearing Schiff bases. J Mol Struct 1180:642–650. https://doi.org/10.1016/j.molstruc.2018.12.039

Article  CAS  Google Scholar 

Hanif M, Hassan M, Rafiq M, Abbas Q, Ishaq A, Shahzadi S, Saleem M (2018) Microwave-assisted synthesis, in vivo anti-inflammatory and in vitro anti-oxidant activities, and molecular docking study of new substituted schiff base derivatives. Pharm Chem J 52:424–437. https://doi.org/10.1016/j.molstruc.2018.12.039

Article  CAS  Google Scholar 

Tapabashi NO, Taha NI, & El-Subeyhi M (2021) Design, Microwave Assisted Synthesis of Some Schiff Bases Derivatives of Congo Red and Conventional Preparation of Their Structurally Reversed Analogous Compounds. International Journal of Organic Chemistry. 11(01):35. http://www.scirp.org/journal/Paperabs.aspx?PaperID=107625

Waghmode KT, Nikam BT (2021) Green Synthesis of Pharmacologically Active Piperazine Substituted Schiff Bases and their Antimicrobial Activities. Der Pharma Chemica 13(2):71–75

CAS  Google Scholar 

Haque J, Srivastava V, Chauhan DS, Lgaz H, Quraishi MA (2018) Microwave-induced synthesis of chitosan Schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach. ACS Omega 3(5):5654–5668. https://doi.org/10.1021/acsomega.8b00455

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seewan AN, Kadhim ZY, Hadi AA (2018) Theoretical treatment, Microwave synthesis and spectroscopic analysis of new schiff bases derived from 4-aminoantipyrene. J Phys: Conf Ser 1003:012011. https://doi.org/10.1088/1742-6596/1003/1/012011

Article  CAS  Google Scholar 

Mohamed M, Abdelakder H, Abdellah B (2021) Microwave assisted synthesis of 4-aminophenol Schiff bases: DFT computations, QSAR/Drug-likeness proprieties and antibacterial screening. J Mol Struct 1241:130666. https://doi.org/10.1016/j.molstruc.2021.130666

Article  CAS  Google Scholar 

Najm S, Naureen H, Sultana K, Anwar F, Khan MM, Nadeem H, Saeed M (2021) Schiff-based metal complexes of lamotrigine: design, synthesis, characterization, and biological evaluation. ACS Omega 6(11):7719–7730. https://doi.org/10.1021/acsomega.1c00027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elham PA, Hadi K (2021) Synthesis, characterization, and study of anti-tubercular and anti-microbial activity of isonicotinohydrazide tridentate schiff base ligands. Iran J Chem Chem Eng 40(1):201–206

CAS  Google Scholar 

Shukla S, Mishra AP (2019) Metal complexes used as anti-inflammatory agents: synthesis, characterization and anti-inflammatory action of VO (II)-complexes. Arab J Chem 12(7):1715–1721. https://doi.org/10.1016/j.arabjc.2014.08.020

Article  CAS  Google Scholar 

Fahmi N, Shrivastava S, Meena R, Joshi SC, Singh RV (2013) Microwave assisted synthesis, spectroscopic characterization and biological aspects of some new chromium (iii) complexes derived from N⁁O donor Schiff bases. New J Chem 37(5):1445–1453. https://doi.org/10.1039/C3NJ40907D

Article  CAS  Google Scholar 

Ghorbani P, Beyramabadi SA, Homayouni-Tabrizi M, Yaghmaei P (2020) Oxovanadium (IV) complexes of the pyridoxal Schiff bases: Synthesis, experimental and theoretical characterizations, QTAIM analysis and antioxidant activity. J Serb Chem Soc 85(1):37–51. https://doi.org/10.2298/JSC190129055G

Article  CAS  Google Scholar 

Al-Hazmi GA, Abou-Melha KS, Althagafi I, El-Metwaly N, Shaaban F, Abdul Galil MS, El-Bindary AA (2020) Synthesis and structural characterization of oxovanadium (IV) complexes of dimedone derivatives. Appl Organomet Chem. https://doi.org/10.1002/aoc.5672

Article  Google Scholar 

Obeid AO, Al-Aghbari S, El-Shekeil A, Al-Shuja’a O, (2021) DNA cleavage studies of some complexes of schiff base pyrimidine one derivatives. Int J Pharm Sci Res 12(2):7. https://doi.org/10.13040/IJPSR.0975-8232.12(2).1233-39

Article  Google Scholar 

Naureen B, Miana GA, Shahid K, Asghar M, Tanveer S, Sarwar A (2021) Iron (III) and zinc (II) monodentate Schiff base metal complexes: Synthesis, characterisation and biological activities. J Mol Struct 1231:129946. https://doi.org/10.1016/j.molstruc.2021.129946

Article  CAS  Google Scholar 

Kargar H, Bazrafshan M, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Rudbari HA, Munawar KS, Tahir MN (2021) Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity of novel oxovanadium and dioxomolybdenum complexes with ONO tridentate Schiff base ligand. Polyhedron 202:115194. https://doi.org/10.1016/j.poly.2021.115194

Article  CAS  Google Scholar 

Urbaniak M, Pobłocki K, Kowalczyk P, Kramkowski K, Drzeżdżon J, Gawdzik B, Jacewicz D (2022) A series of green oxovanadium (IV) precatalysts with O, N and S donor ligands in a sustainable olefins oligomerization process. Molecules 27(22):8038. https://doi.org/10.3390/molecules27228038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kargar H, Kaka-Naeini A, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Amiri Rudbari H, Munawar KS (2021) Oxovanadium and dioxomolybdenum complexes: synthesis, crystal structure, spectroscopic characterization and applications as homogeneous catalysts in sulfoxidation. J Coord Chem 74(9–10):1563–1583. https://doi.org/10.1080/00958972.2021.1915488

Article  CAS  Google Scholar 

Katsuumi N, Sehimi H, Pradhan S, Kim S, Haraguchi T, Akitsu T (2021) Oxovanadium (V/IV) complexes as redox mediators for biofuel cells: physical, magnetic, and electrochemical characterization. DFT and Mol Dock Compd 1(1):15–28. https://doi.org/10.3390/compounds1010003

Article  Google Scholar 

Sharma BP, Pandey SK, Marasini BP, Shrestha S, Sharma ML (2021) Oxovanadium (IV) complexes with triazole based Schiff base ligands: synthesis, characterization and antibacterial study. J Nepal Chem Soc 42(1):56–63. https://doi.org/10.3126/jncs.v42i1.35332

Article  Google Scholar 

Bagryanskaya IY, Gatilov YV, Maksimov AM, Platonov VE, Zibarev AV (2005) Supramolecular synthons in crystals of partially fluorinated fused aromatics: 1, 2, 3, 4-Tetrafluoronaphthalene and its aza-analogue 1, 3, 4-trifluoroisoquinoline. J Fluorine Chem 126(9–10):1281–1287. https://doi.org/10.1016/j.jfluchem.2005.06.011

Article  CAS  Google Scholar 

Bi H, Ye K, Zhao Y, Yang Y, Liu Y, Wang Y (2010) Fluorinated quinacridone derivative based organic light-emitting device with high power efficiency. Org Electron 11(7):1180–1184. https://doi.org/10.1016/j.orgel.2010.04.015

Article  CAS  Google Scholar 

Avila-Sorrosa A, Hernández-González JI, Reyes-Arellano A, Toscano RA, Reyes-Martínez R, Pioquinto-Mendoza JR, Morales-Morales D (2015) Synthesis, structural characterization and biological activity of fluorinated Schiff-bases of the type [C6H4-1-(OH)-3-(CHNArF)]. J Mol Struct 1085:249–257. https://doi.org/10.1016/j.molstruc.2014.12.080

Article  CAS  Google Scholar 

Sahu G, Tiekink ER, Dinda R (2021) Study of DNA interaction and cytotoxicity activity of oxidovanadium (V) complexes with ONO donor Schiff base ligands. Inorganics 9(9):66. https://doi.org/10.3390/inorganics9090066

Article  CAS  Google Scholar 

Vogel AI (2006) A Textbook of quantitative chemical analysis. Pearson Education Ltd. U.K., 6th edition, 387p.

Volhard J (1874) Ueber eine neue Methode der maassanalytischen Bestimmung des Silbers. J Prakt Chem 9(1):217–224

Article  Google Scholar 

Zalevskaya Olga et al (2020) Antimicrobial and antifungal activities of terpene-derived palladium complexes.". Antibiotics 9(5):277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kubra IR, Murthy PS, Rao LJM (2013) In vitro antifungal activity of dehydrozingerone and its fungitoxic properties. J Food Sci. https://doi.org/10.1111/j.1750-3841.2012.03009.x

Article  PubMed  Google Scholar 

Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Article  PubMed  Google Scholar 

Bheemarasetti M, Palakuri K, Raj S, Saudagar P, Gandamalla D, Yellu NR, Kotha LR (2018) Novel Schiff base metal complexes: synthesis, characterization, DNA binding, DNA cleavage and molecular docking studies. J Iran Chem Soc 15:1377–1389. https://doi.org/10.1007/s13738-018-1338-7

Comments (0)

No login
gif