Siddiqui JA, et al. Physiological bone remodeling: systemic regulation and growth factor involvement. Physiology (Bethesda). 2016;31(3):233–45.
Da W, et al. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front Endocrinol (Lausanne). 2021;12: 675385.
Feng X, et al. Osteoclasts: new insights. Bone Res. 2013;1(1):11–26.
Indo Y, et al. Metabolic regulation of osteoclast differentiation and function. J Bone Miner Res. 2013;28(11):2392–9.
Article CAS PubMed Google Scholar
Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.
Article CAS PubMed Google Scholar
• Jacome-Galarza CE, et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature. 2019;568(7753):541–5. This study elucidates the origins of osteoclasts.
• Yahara Y, et al. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol. 2020;22(1):49–59. This study elucidates the origins of osteoclasts.
Henriksen K, et al. Osteoclast activity and subtypes as a function of physiology and pathology–implications for future treatments of osteoporosis. Endocr Rev. 2011;32(1):31–63.
Article CAS PubMed Google Scholar
Udagawa N, et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A. 1990;87(18):7260–4.
Article CAS PubMed PubMed Central Google Scholar
• McDonald MM, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184(5):1330–47 e13. This study presents compelling evidence regarding the alternative fate of osteoclasts.
Faubert B, et al. Metabolic reprogramming and cancer progression. Science. (2020);368(6487):eaaw5473
Park-Min KH. Metabolic reprogramming in osteoclasts. Semin Immunopathol. 2019;41(5):565–72.
Article CAS PubMed PubMed Central Google Scholar
Karner CM, et al. Glucose metabolism in bone. Bone. 2018;115:2–7.
Article CAS PubMed Google Scholar
Devignes CS, et al. Amino acid metabolism in skeletal cells. Bone Rep. 2022;17: 101620.
Article CAS PubMed PubMed Central Google Scholar
Spinelli JB, et al. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745–54.
Article CAS PubMed PubMed Central Google Scholar
Osellame LD, et al. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711–23.
Article CAS PubMed PubMed Central Google Scholar
Baron R, et al. Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts. Am J Pathol. 1986;122(2):363–78.
CAS PubMed PubMed Central Google Scholar
Czupalla C, et al. Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics. 2005;5(15):3868–75.
Article CAS PubMed Google Scholar
Lemma S, et al. Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol. 2016;79:168–80.
Article CAS PubMed Google Scholar
Miyazaki T, et al. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption. J Biol Chem. 2012;287(45):37808–23.
Article CAS PubMed PubMed Central Google Scholar
Arnett TR, et al. Metabolic properties of the osteoclast. Bone. 2018;115:25–30.
Article CAS PubMed Google Scholar
Ishii KA, et al. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med. 2009;15(3):259–66.
Article CAS PubMed Google Scholar
Wei W, et al. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 2010;11(6):503–16.
Article CAS PubMed PubMed Central Google Scholar
Das BK, et al. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton. Elife. 2022;11:e73539
Zhang J, et al. Deferoxamine inhibits iron-uptake stimulated osteoclast differentiation by suppressing electron transport chain and MAPKs signaling. Toxicol Lett. 2019;313:50–9.
Article CAS PubMed Google Scholar
Wang L, et al. Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo. J Biol Chem. 2018;293(24):9248–64.
Article CAS PubMed PubMed Central Google Scholar
• Zhang Y, et al. PGC1beta organizes the osteoclast cytoskeleton by mitochondrial biogenesis and activation. J Bone Miner Res. 2018;33(6):1114–25. This study demonstrates that osteoclast mitochondria play a pivotal role in regulating the cell's resorptive activity through the promotion of cytoskeletal organization.
Izawa T, et al. ASXL2 regulates glucose, lipid, and skeletal homeostasis. Cell Rep. 2015;11(10):1625–37.
Article CAS PubMed PubMed Central Google Scholar
Zeng R, et al. Alternative NF-kappaB regulates RANKL-induced osteoclast differentiation and mitochondrial biogenesis via independent mechanisms. J Bone Miner Res. 2015;30(12):2287–99.
Article CAS PubMed Google Scholar
Bae S, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRalpha. J Clin Invest. 2017;127(7):2555–68.
Article PubMed PubMed Central Google Scholar
Jin Z, et al. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization. Cell Metab. 2014;20(3):483–98.
Article CAS PubMed PubMed Central Google Scholar
Ballard A, et al. The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca(2+)-NFATc1 axis. J Biol Chem. 2020;295(19):6629–40.
Article CAS PubMed PubMed Central Google Scholar
Jeong S, et al. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss. FEBS Lett. 2021;595(1):58–67.
Article CAS PubMed Google Scholar
Nishikawa K, et al. Opa1-mediated mitochondrial dynamics is important for osteoclast differentiation. MicroPubl Biol. 2022.
An E, et al. Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling. Mol Cell Proteomics. 2014;13(10):2687–704.
Article CAS PubMed PubMed Central Google Scholar
Li B, et al. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation. FASEB J. 2020;34(8):11058–67.
Article CAS PubMed Google Scholar
Williams JP, et al. Regulation of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun. 1997;235(3):646–51.
Article CAS PubMed Google Scholar
Riddle RC, et al. Bone cell bioenergetics and skeletal energy homeostasis. Physiol Rev. 2017;97(2):667–98.
Article CAS PubMed PubMed Central Google Scholar
Kim JM, et al. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cell Physiol Biochem. 2007;20(6):935–46.
Article CAS PubMed Google Scholar
Rashid S, et al. Identification of differentially expressed genes and molecular pathways involved in osteoclastogenesis using RNA-seq. Genes (Basel). 2023;14(4):916.
Article CAS PubMed PubMed Central Google Scholar
Wilches-Buitrago L, et al. Fructose 1,6-bisphosphate inhibits osteoclastogenesis by attenuating RANKL-induced NF-kappaB/NFATc-1. Inflamm Res. 2019;68(5):415–21.
Article CAS PubMed Google Scholar
Ahn H, et al. Accelerated lactate dehydrogenase activity potentiates osteoclastogenesis via NFATc1 signaling. PLoS ONE. 2016;11(4): e0153886.
Article PubMed PubMed Central Google Scholar
• Taubmann J, et al. Metabolic reprogramming of osteoclasts represents a therapeutic target during the treatment of osteoporosis. Sci Rep. 2020;10(1):2102. This study underscores the therapeutic promise of manipulating metabolic pathways intrinsic to osteoclasts.
Wang J, et al. Inhibition of PFKFB3 suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. J Cell Mol Med. 2020;24(3):2294–307.
Comments (0)