Pearle MS, Calhoun EA, Curhan GC (2005) Urologic diseases in America project: urolithiasis. J Urol 173:848–857. https://doi.org/10.1097/01.ju.0000152082.14384.d7
Scales CD, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. Eur Urol 62:160–165. https://doi.org/10.1016/j.eururo.2012.03.052
Article PubMed PubMed Central Google Scholar
Ye Z, Zeng G, Yang H, Li J, Tang K, Wang G, Wang S, Yu Y, Wang Y, Zhang T, Long Y, Li W, Wang C, Wang W, Gao S, Shan Y, Huang X, Bai Z, Lin X, Cheng Y, Wang Q, Xu Z, Xie L, Yuan J, Ren S, Fan Y, Pan T, Wang J, Li X, Chen X, Gu X, Sun Z, Xiao K, Jia J, Zhang Q, Wang G, Sun T, Li X, Xu C, Xu C, Shi G, He J, Song L, Sun G, Wang D, Liu Y, Wang C, Han Y, Liang P, Wang Z, He W, Chen Z, Xing J, Xu H (2020) The status and characteristics of urinary stone composition in China. BJU Int 125:80. https://doi.org/10.1111/bju.14765
Dawson PA, Russell CS, Lee S, McLeay SC, van Dongen JM, Cowley DM, Clarke LA, Markovich D (2010) Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest 120(3):706–712. https://doi.org/10.1172/JCI31474
Article CAS PubMed PubMed Central Google Scholar
Corbo J, Wang J (2019) Kidney and ureteral stones. Emerg Med Clin North Am 37:637–648. https://doi.org/10.1016/j.emc.2019.07.004
Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17:417–433. https://doi.org/10.1038/s41581-020-00392-1
Article CAS PubMed Google Scholar
Yang Y, Hong S, Lu Y, Wang Q, Wang S, Xun Y (2022) CAV1 alleviated CaOx stones formation via suppressing autophagy-dependent ferroptosis. PeerJ 10:e14033. https://doi.org/10.7717/peerj.14033
Article CAS PubMed PubMed Central Google Scholar
Mehmet NM, Ender O (2015) Effect of urinary stone disease and its treatment on renal function. World J Nephrol 4:271–276. https://doi.org/10.5527/wjn.v4.i2.271
Article PubMed Central Google Scholar
Li Y, Zhang J, Liu H, Yuan J, Yin Y, Wang T, Cheng B, Sun S, Guo Z (2019) Curcumin ameliorates glyoxylate-induced calcium oxalate deposition and renal injuries in mice. Phytomedicine 61:152861. https://doi.org/10.1016/j.phymed.2019.152861
Article CAS PubMed Google Scholar
Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367(9507):333–344. https://doi.org/10.1016/S0140-6736(06)68071-9
Article CAS PubMed Google Scholar
Marchini GS, Vicentini FC, Monga M, Torricelli FC, Danilovic A, Brito AH, Câmara C, Srougi M, Mazzucchi E (2016) Irreversible renal function impairment due to silent ureteral stones. Urology 93:33–39. https://doi.org/10.1016/j.urology.2016.02.042
Nakada SY, Jerde TJ, Jacobson LM, Saban R, Bjorling DE, Hullett DA (2002) Cyclooxygenase-2 expression is up-regulated in obstructed human ureter. J Urol 168:1226–1230. https://doi.org/10.1016/S0022-5347(05)64630-7
Article CAS PubMed Google Scholar
Ankem MK, Jerde TJ, Wilkinson ER, Nakada SY (2005) Third prize: prostaglandin E2–3 receptor is involved in ureteral contractility in obstruction. J Endourol 19:1088–1091. https://doi.org/10.1089/end.2005.19.1088
Wormser C, Clarke DL, Aronson LR (2016) Outcomes of ureteral surgery and ureteral stenting in cats: 117 cases (2006–2014). J Am Vet Med Assoc 248:518–525. https://doi.org/10.2460/javma.248.5.518
Kyles AE, Stone EA, Gookin J, Spaulding K, Clary EM, Wylie K, Spodnick G (1998) Diagnosis and surgical management of obstructive ureteral calculi in cats: 11 cases (1993–1996). J Am Vet Med Assoc 213:1150–1156
Low WW, Uhl JM, Kass PH, Ruby AL, Westropp JL (2010) Evaluation of trends in urolith composition and characteristics of dogs with urolithiasis: 25,499 cases (1985–2006). J Am Vet Med Assoc 236:193–200. https://doi.org/10.2460/javma.236.2.193
Article CAS PubMed Google Scholar
Zaid MS, Berent AC, Weisse C, Caceres A (2011) Feline ureteral strictures: 10 cases (2007–2009). J Vet Intern Med 25:222–229. https://doi.org/10.1111/j.1939-1676.2011.0679.x
Article CAS PubMed Google Scholar
Sasaki H, Sasaki T, Hiura K, Watanabe M, Sasaki N (2022) A mouse model of type B cystinuria due to spontaneous mutation in FVB/NJcl mice. Urolithiasis 50:679–684. https://doi.org/10.1007/s00240-022-01356-9
Article CAS PubMed Google Scholar
Martínez-Klimova E, Aparicio-Trejo OE, Tapia E, Pedraza-Chaverri J (2019) Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9:141. https://doi.org/10.3390/biom9040141
Article CAS PubMed PubMed Central Google Scholar
Reicherz A, Eltit F, Almutairi K, Mojtahedzadeh B, Herout R, Chew B, Cox M, Lange D (2023) Ureteral obstruction promotes ureteral inflammation and fibrosis. Eur Urol Focus 9:371–380. https://doi.org/10.1016/j.euf.2022.09.014
Chuang YH, Chuang WL, Huang SP, Liu KM, Huang CH (1995) The temporal relationship between the severity of hydroureter and the dynamic changes of obstructed ureters in a rat model. Br J Urol 76:303–310. https://doi.org/10.1111/j.1464-410x.1995.tb07705.x
Article CAS PubMed Google Scholar
Chuang Y, Chuang W, Liu K, Chen S, Huang C (1998) Tissue damage and regeneration of ureteric smooth muscle in rats with obstructive uropathy. BJU Int 82:261–266. https://doi.org/10.1046/j.1464-410x.1998.00725.x
Chevalier RL, Forbes MS, Thornhill BA (2009) Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 75(11):1145–1152. https://doi.org/10.1038/ki.2009.86
Guo J, Wu W, Sheng M, Yang S, Tan J (2013) Amygdalin inhibits renal fibrosis in chronic kidney disease. Mol Med Rep 7(5):1453–1457. https://doi.org/10.3892/mmr.2013.1391
Article CAS PubMed Google Scholar
Capelouto CC, Saltzman B (1993) The pathophysiology of ureteral obstruction. J Endourol 7:93–103. https://doi.org/10.1089/end.1993.7.93
Article CAS PubMed Google Scholar
El Ayadi A, Jay JW, Prasai A (2020) Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int J Mol Sci 21(3):1105. https://doi.org/10.3390/ijms21031105
Article CAS PubMed PubMed Central Google Scholar
Frangogiannis NG (2020) Transforming growth factor–β in tissue fibrosis. J Exp Med 217:e20190103. https://doi.org/10.1084/jem.20190103
Article PubMed PubMed Central Google Scholar
Juban G, Saclier M, Yacoub-Youssef H, Kernou A, Arnold L, Boisson C, Ben Larbi S, Magnan M, Cuvellier S, Théret M, Petrof BJ, Desguerre I, Gondin J, Mounier R, Chazaud B (2018) AMPK activation regulates LTBP4-dependent TGF-β1 secretion by pro-inflammatory macrophages and controls fibrosis in Duchenne muscular dystrophy. Cell Rep 25:2163-2176.e6. https://doi.org/10.1016/j.celrep.2018.10.077
Article CAS PubMed Google Scholar
Serini G, Gabbiani G (1996) Modulation of α-smooth muscle actin expression in fibroblasts by transforming growth factor-β isoforms: an in vivo and in vitro study. Wound Repair Regen 4:278–287. https://doi.org/10.1046/j.1524-475X.1996.40217.x
Article CAS PubMed Google Scholar
Hinz B, McCulloch CA, Coelho NM (2019) Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 379:119–128. https://doi.org/10.1016/j.yexcr.2019.03.027
Comments (0)