Javier Díaz-Castrillón F, Toro-Montoya AI Artículo de revisión SARS-CoV-2/COVID-19: el virus, la enfermedad y la pandemia SARS-CoV-2/COVID-19: The virus, the disease and the pandemic.
Kausar S, Khan F S, Ur Rehman M I M, Akram M, Riaz M, Rasool G et al. A review: mechanism of action of antiviral drugs. International Journal of Immunopathology and Pharmacology, 35. SAGE Publications Inc., 2021. https://doi.org/10.1177/20587384211002621.
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorganic and Medicinal Chemistry, 27, Elsevier Ltd, pp. 3511–3531, 2019. https://doi.org/10.1016/j.bmc.2019.07.005.
Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: Review. RSC Advances, 10, Royal Society of Chemistry, pp. 5610–5635, 2020. https://doi.org/10.1039/c9ra09510a.
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, et al. An Overview on Biological Activities of 1,2,3-Triazole Derivatives. 2022, pp. 401–423. https://doi.org/10.1007/978-981-16-8399-2_11.
Serafini M, Pirali T, Tron GC. “Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic?” in Advances in Heterocyclic Chemistry, Academic Press Inc., 2021, pp. 101–148. https://doi.org/10.1016/bs.aihch.2020.10.001.
Srivastava S, Maikhuri VK, Mathur D, Prasad AK “Recent Advances in Triazolyl Nucleosides,” in Green Chemistry in Environmental Sustainability and Chemical Education, Springer Singapore, 2018, pp. 153–173. https://doi.org/10.1007/978-981-10-8390-7_16.
Lin X, Liang C, Zou L, Yin Y, Wang J, Chen D, Lan W. “Advance of structural modification of nucleosides scaffold,” European Journal of Medicinal Chemistry, 214. Elsevier Masson s.r.l., 2021;15. https://doi.org/10.1016/j.ejmech.2021.113233.
Elkanzi NAA, El-Sofany WI, Gaballah ST, Mohamed AM, Kutkat O, El-Sayed WA. Synthesis, Molecular Modeling, and Antiviral Activity of Novel Triazole Nucleosides and Their Analogs. Russ J Gen Chem. 2019;89:1896–904. https://doi.org/10.1134/S1070363219090263.
Matada BS, Pattanashettar R, Yernale NG. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg Med Chem. 2021;32:115973 https://doi.org/10.1016/j.bmc.2020.115973.
Article CAS PubMed Google Scholar
Chu XM, Wang C, Liu W, Liang LL, Gong KK, Zhao CY, Sun KL. “Quinoline and quinolone dimers and their biological activities: An overview,” European Journal of Medicinal Chemistry, 161. Elsevier Masson SAS, pp. 101–117, 2019. https://doi.org/10.1016/j.ejmech.2018.10.035.
de la Guardia C, Stephens DE, Dang HT, Quijada M, Larionov OV, R. Lleonart “Antiviral activity of novel quinoline derivatives against dengue virus serotype 2,” Molecules, 2018;23. https://doi.org/10.3390/molecules23030672.
Hammond A, Fitzner J, Collins L, Ong SK, Vandemaele K. “Human cases of influenza at the human-animal interface, January 2015-April 2017,” 2017.
McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. “Influenza virus neuraminidase structure and functions,” Frontiers in Microbiology, 10, 39, JAN. Frontiers Media S.A., 2019. https://doi.org/10.3389/fmicb.2019.00039.
Sebastian MR, Lodha R, Kabra SK. Swine Origin Influenza (Swine Flu).
Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY, et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis. 2012;12:687–95. https://doi.org/10.1016/S1473-3099(12)70121-4.
Andreeva OV, Garifullin BF, Zarubaev VV, Slita AV, Yesaulkova IL, Saifina LF, et al. Synthesis of 1,2,3-triazolyl nucleoside analogues and their antiviral activity. Mol Divers. 2021;25:473–90. https://doi.org/10.1007/s11030-020-10141-y.
Article CAS PubMed Google Scholar
de Farias ST, dos Santos AP, Rêgo TG, José MV. Origin and evolution of RNA-dependent RNA polymerase. Front Genet. 2017;8. https://doi.org/10.3389/fgene.2017.00125.
Andreeva OV et al. Synthesis and antiviral evaluation of nucleoside analogues bearing one pyrimidine moiety and two d-ribofuranosyl residues. Molecules. 2021;26. https://doi.org/10.3390/molecules26123678.
Peischard S, Ho HT, Theiss C, Strutz-Seebohm N, Seebohm G. “A kidnapping story: How coxsackievirus B3 and its host cell interact,” Cellular Physiology and Biochemistry, 53, Cell Physiol Biochem Press GmbH & Co KG, pp. 121–140, 2019. https://doi.org/10.33594/000000125.
Tatarinov DA, Garifullin BF, Belenok MG, Andreeva OV, Strobykina IY, Shepelina AV, et al. The first 5′-phosphorylated 1,2,3-triazolyl nucleoside analogues with uracil and quinazoline-2,4-dione moieties: a synthesis and antiviral evaluation. Molecules. 2022;27:6214 https://doi.org/10.3390/molecules27196214.
Article CAS PubMed PubMed Central Google Scholar
Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12:447–64. https://doi.org/10.1038/nrd4010.
Article CAS PubMed Google Scholar
Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. “Selected nucleos(t)ide-based prescribed drugs and their multi-target activity,” Eur J Pharmacol. 2019;865. https://doi.org/10.1016/j.ejphar.2019.172747.
Kutkat O, Kandeil A, Moatasim Y, Elshaier Y A M M, El-Sayed W A, Gaballah S T et al. “In vitro and in vivo antiviral studies of new heteroannulated 1,2,3-triazole glycosides targeting the neuraminidase of influenza A viruses,” Pharmaceuticals. 2022;15. https://doi.org/10.3390/ph15030351.
Głowacka IE, Andrei G, Schols D, Snoeck R, Gawron K. “Design, synthesis, and the biological evaluation of a new series of acyclic 1,2,3-triazole nucleosides,” Arch Pharm (Weinheim)., 350, 2017, https://doi.org/10.1002/ardp.201700166.
Sharma N, Sharma UK, Van Der Eycken EV, “Microwave-assisted organic synthesis: overview of recent applications” 2018.
Berrino E, Supuran CT. Advances in microwave-assisted synthesis and the impact of novel drug discovery. Expert Opinion on Drug Discovery, 13, Taylor and Francis Ltd, pp. 861–873, Sep, 2018. https://doi.org/10.1080/17460441.2018.1494721.
Nain S, Singh R, Ravichandran S. “Importance of microwave heating in organic synthesis,” Adv J Chem-Section A. 94–104, 2019, https://doi.org/10.29088/sami/ajca.2019.2.94104.
Ramírez-Olivencia G, Estébanez M, Membrillo FJ, del Ybarra MC “Use of ribavirin in viruses other than hepatitis C. A review of the evidence,” Enfermedades Infecciosas y Microbiologia Clinica, 37, Elsevier Doyma, pp. 602–608, 2019. https://doi.org/10.1016/j.eimc.2018.05.008.
Lafeuillade A, Hittinger G, Chadapaud S. “Increased mitochondrial toxicity with ribavirin in HIV/HCV coinfection,” 2001.
Kowdley KV. “Hematologic Side Effects of Interferon and Ribavirin Therapy RIBAVIRIN-INDUCED ANEMIA,” 2005.
Carrion AF, Fabrizi F, Martin P. Should ribavirin be used to treat hepatitis C in dialysis patients?”. Semin Dial. 2011;24:272–74. https://doi.org/10.1111/j.1525-139X.2011.00851.x.
Bunchorntavakul C, Reddy KR. Ribavirin: How does it work and is it still needed?”. Curr Hepat Rep. 2011;10:168–78. https://doi.org/10.1007/s11901-011-0102-6.
Crotty S, Cameron C, Andino R. Ribavirin’s antiviral mechanism of action: Lethal mutagenesis?”. J Mol Med. 2002;80:86–95. https://doi.org/10.1007/s00109-001-0308-0.
Article CAS PubMed Google Scholar
Leyssen P, De Clercq E, Neyts J. Molecular strategies to inhibit the replication of RNA viruses. Antivir Res. 2008;78:9–25. https://doi.org/10.1016/j.antiviral.2008.01.004.
Article CAS PubMed Google Scholar
Parker WB. Metabolism and antiviral activity of ribavirin. Virus Res. 2005;107:165–71. https://doi.org/10.1016/j.virusres.2004.11.006.
Article CAS PubMed Google Scholar
Shah NR, Sunderland A, Grdzelishvili VZ. “Cell type mediated resistance of vesicular stomatitis virus and sendai virus to ribavirin,”. PLoS One. 2010;5:11265 https://doi.org/10.1371/journal.pone.0011265.
de Lourdes G. Ferreira M, Pinheiro LCS, Santos-Filho OA, Peçanha M, Sacramento CQ, Machado V, et al. Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Med Chem Res. 2014;23:1501–11. https://doi.org/10.1007/s00044-013-0762-6.
Tian L, Kim MS, Li H, Wang J, Yang W. Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid. Proc Natl Acad Sci USA. 2018;115:507–12. https://doi.org/10.1073/pnas.1719746115.
Article CAS PubMed PubMed Central Google Scholar
Krajczyk A, Kulinska K, Kulinski T, Hurst BL, Day CW, Smee DF, et al. Antivirally active ribavirin analogues - 4,5-disubstituted 1,2,3-triazole nucleosides: Biological evaluation against certain respiratory viruses and computational modelling. Antivir Chem Chemother. 2014;23:161–71. https://doi.org/10.3851/IMP2564.
Article CAS PubMed Google Scholar
Leung AKC, Hon KL, Leong KF Sergi CM. “Measles: A disease often forgotten but not gone,” Hong Kong Medical Journal, 24, Hong Kong Academy of Medicine Press, pp. 512–20, 2018. https://doi.org/10.12809/hkmj187470.
Coultas JA, Smyth R, Openshaw PJ. “Respiratory syncytial virus (RSV): A scourge from infancy to old age,” Thorax. BMJ Publishing Group, 2019. https://doi.org/10.1136/thoraxjnl-2018-212212.
Contin M, Sepúlveda C, Fascio M, Stortz CA, Damonte EB, D’Accorso NB. Modified ribavirin analogues as antiviral agents against Junín virus. Bioorg Med Chem Lett. 2019;29:556–559. https://doi.org/10.1016/j.bmcl.2018.12.063.
Article CAS PubMed Google Scholar
Roldán JS, Candurra NA, Colombo MI, Delgui LR. “Junín Virus Promotes Autophagy to Facilitate the Virus Life Cycle,” 2019. https://doi.org/10.1128/JVI.
Grant A, Seregin A, Huang C, Kolokoltsova O, Brasier A, Peters C, et al. Junín virus pathogenesis and virus replication. Viruses. 2012;4:2317–2339. https://doi.org/10.3390/v4102317.
Article CAS PubMed PubMed Central Google Scholar
Battini L, Bollini M. “Challenges and approaches in the discovery of human immunodeficiency virus type-1 non-nucleoside reverse transcriptase inhibitors,” Medicinal Research Reviews, 39, John Wiley and Sons Inc., 2019;1235–1273. https://doi.org/10.1002/med.21544.
Zhuang C, Pannecouque C, De Clercq E, Chen F “Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years,” Acta Pharmaceutica Sinica B, 10, Chinese Academy of Medical Sciences, pp. 2020;961–978. https://doi.org/10.1016/j.apsb.2019.11.010.
Ding L, Zhuang C, Chen F. “Druggability modification strategies of the diarylpyrimidine-type non-nucleoside reverse transcriptase inhibitors,” Medicinal Research Reviews, 41, John Wiley and Sons Inc, pp. 2021;1255–90. https://doi.org/10.1002/med.21760.
Gu SX, Xiao T, Zhu YY, Liu GY, Chen FE. “Recent progress in HIV-1 inhibitors targeting the entrance channel of HIV-1 non-nucleoside reverse transcriptase inhibitor binding pocket,” European Journal of Medicinal Chemistry, 174. Elsevier Masson s.r.l., pp. 277–91, 2019. https://doi.org/10.1016/j.ejmech.2019.04.054.
Kang D, Wang Z, Zhang H, Wu G, Zhao T, Zhou Z, et al. Further exploring solvent-exposed tolerant regions of allosteric binding pocket for novel HIV-1 NNRTIs discovery. ACS Med Chem Lett. 2018;9:370–5. https://doi.org/10.1021/acsmedchemlett.8b00054.
Article CAS PubMed PubMed Central Google Scholar
Wang Z, Yu Z, Kang D, Zhang J, Tian Y, Daelemans D et al. “Design, synthesis and biological evaluation of novel acetamide-substituted doravirine and its prodrugs as potent HIV-1 NNRTIs,” Bioorganic and Medicinal Chemistry, 27, Elsevier Ltd, pp. 447–56, 2019. https://doi.org/10.1016/j.bmc.2018.12.039.
Zhou Z, Liu T, Wu G, Kang D, Fu Z, Wang Z, et al. Targeting the hydrophobic channel of NNIBP: Discovery of novel 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs with high potency against wild-type and K103N mutant virus. Org Biomol Chem. 2019;17:3202–17. https://doi.org/10.1039/c9ob00032a.
Article CAS PubMed Google Scholar
Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, et al. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem. 2018;151:339–50. https://doi.org/10.1016/j.ejmech.2018.03.059.
Article CAS PubMed PubMed Central Google Scholar
Xu H-T, Asahchop EL, Oliveira M, Quashie PK, Quan Y, Brenner BG, et al. Compensation by the E138K mutation in HIV-1 reverse transcriptase for deficits in viral replication capacity and enzyme processivity associated with the M184I/V mutations. J Virol. 2011;85:11300–11308. https://doi.org/10.1128/jvi.05584-11.
Article CAS PubMed PubMed Central Google Scholar
Kasralikar HM, Jadhavar SC, Bhansali SG, Patwari SB, Bhusare SR. Design and synthesis of novel 1,2,3-triazolyl-pyrimidinone hybrids as potential Anti-HIV-1 NNRT inhibitors. J Heterocycl Chem. 2018;55:821–9. https://doi.org/10.1002/jhet.3103.
Jadhavar SC, Bhansali SG, Patwari SB, Bhusare SR, Kasralikar HM. Design, Synthesis and Docking Studies of Novel 1, 2, 3-Triazolyl Phenylthiazole Analogs as Potent Anti-HIV-1 NNRT Inhibitors. Med Chem (Los Angeles)., 7, 10, 2017, https://doi.org/10.4172/2161-0444.1000467.
“COVID-19 (Novel Coronavirus 2019)—recent trends,” 2006.
Lupia T, Scabini S, Mornese Pinna S, Di Perri G, De Rosa FG, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: a new challenge. J Glob Antimicrob Resist. 2020;21:22–27. https://doi.org/10.1016/j.jgar.2020.02.021.
Article PubMed PubMed Central Google Scholar
Negi M, Chawla PA, Faruk A, Chawla V. “Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic,” Bioorganic Chemistry, 104. Academic Press Inc., 2020.
Comments (0)