Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA (2019) ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 13:1310. https://doi.org/10.3389/fnins01310
Article PubMed PubMed Central Google Scholar
Bensimon G, Lacomblez L, Meininger V, ALS/Riluzole Study Group (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330:585–591. https://doi.org/10.1056/NEJM199403033300901
Estevez AG, Stutzmann JM, Barbeito L (1995) Protective effect of riluzole on excitatory amino acid-mediated neurotoxicity in motoneuron-enriched cultures. Eur J Pharmacol 280:47–53. https://doi.org/10.1016/0014-2999(95)00186-o
Article CAS PubMed Google Scholar
Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47(6 Suppl 4):S233–S241. https://doi.org/10.1212/wnl.47.6_suppl_4.233s
Article CAS PubMed Google Scholar
Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S (2016) The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 6:28649. https://doi.org/10.1038/srep28649
Article CAS PubMed PubMed Central Google Scholar
Aoki M, Warita H, Mizuno H et al (2011) Feasibility study for functional test battery of SOD transgenic rat (H46R) and evaluation of edaravone, a free radical scavenger. Brain Res 1382:321. https://doi.org/10.1016/j.brainres.2011.01.058
Article CAS PubMed Google Scholar
Ueda T, Inden M, Shirai K, Sekine SI, Masaki Y, Kurita H, Ichihara K, Inuzuka T, Hozumi I (2017) The effects of Brazilian green propolis that contains flavonols against mutant copper-zinc superoxide dismutase-mediated toxicity. Sci Rep 7(1):2882. https://doi.org/10.1038/s41598-017-03115-y
Article CAS PubMed PubMed Central Google Scholar
Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Núñez O, Pallás M, Portero-Otin M, Osta R, Navarro X (2014) Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 11(2):419–432. https://doi.org/10.1007/s13311-013-0253-y
Article CAS PubMed PubMed Central Google Scholar
West M, Mhatre M, Ceballos A et al (2004) The arachidonic acid 5-lipoxygenase inhibitor nordihydroguairetic acid inhibits tumor necrosis activation of microglia and extends survival of G93A-SOD1 transgenic miceb. J Neurochem 91:133–143. https://doi.org/10.1111/j.1471-4159.2004.02700.x
Article CAS PubMed Google Scholar
Fontanilla CV, Wei X, Zhao L, Johnstone B, Pascuzzi RM, Farlow MR, Du Y (2011) Caffeic acid phenethyl ester extends survival of a mouse model of amyotrophic lateral sclerosis. Neuroscience 15(205):185–193. https://doi.org/10.1016/j.neuroscience.2011.12.025
Xu Z, Chen S, Li X, Luo G, Li L (2006) Le W (2006) Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 31(10):1263–1269. https://doi.org/10.1007/s11064-006-9166-z
Article CAS PubMed Google Scholar
Dutta K, Thammisetty SS, Boutej H et al (2020) Mitigation of ALS pathology by neuron- specific inhibition of nuclear factor Kappa B signaling. J Neurosci 40:5137–5153. https://doi.org/10.1523/JNEUROSCI.0536-20
Article CAS PubMed PubMed Central Google Scholar
Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK, Foust KD, Godbout JP, Popovich PG, Guttridge DC, Kaspar BK (2014) Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81(5):1009–1023. https://doi.org/10.1016/j.neuron.01.013
Article CAS PubMed PubMed Central Google Scholar
Kaspar BK, Lladó J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301(5634):839–842. https://doi.org/10.1126/science.1086137
Article CAS PubMed Google Scholar
Azzouz M, Ralph GS, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417. https://doi.org/10.1038/nature02544
Article CAS PubMed Google Scholar
Bianchi VE, Locatelli V, Rizzi L (2017) Neurotrophic and neuroregenerative effects of GH/IGF1. Int J Mol Sci 18(11):2441. https://doi.org/10.3390/ijms18112441
Article CAS PubMed PubMed Central Google Scholar
Egawa N, Kitaoka S, Tsukita K et al. (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4(145):145ra104. https://doi.org/10.1126/scitranslmed.3004052
Wong SQ, Pontifex MG, Phelan MM et al (2018) α-Methyl-α-phenylsuccinimide ameliorates neurodegeneration in a C. elegans model of TDP-43 proteinopathy. Neurobiol Dis 118:40–54. https://doi.org/10.1016/j.nbd.2018.06.013
Article CAS PubMed PubMed Central Google Scholar
Srinivasan E, Rajasekaran R (2018) Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: a quantum chemical and molecular mechanics study. BioFactors 4(5):431–442. https://doi.org/10.1002/biof.1441
Maurel C, Chami AA, Thépault RA, Marouillat S, Blasco H, Corcia P, Andres CR, Vourc’h PA (2020) A role for SUMOylation in the formation and cellular localization of TDP-43 aggregates in amyotrophic lateral sclerosis. Mol Neurobiol 57(3):1361–1373. https://doi.org/10.1007/s12035-019-01810-7
Article CAS PubMed Google Scholar
Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0018-2016
Willis CL, Meldrum BS, Nunn PB, Anderton BH, Leigh PN (1993) Neuronal damage induced by beta-N-oxalylamino-L-alanine, in the rat hippocampus, can be prevented by a non-NMDA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Brain Res 627(1):55–62. https://doi.org/10.1016/0006-8993(93)90748-c.
Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1–3):6–18. https://doi.org/10.1016/j.ejphar.2012.10.032
Article CAS PubMed Google Scholar
Kusama-Eguchi K, Miyano T, Yamamoto M et al (2014) New insight into the mechanism of neurolathyrism: L-ß-ODAP triggers [Ca2+]i accumulation and cell death in primary motor neurons through transient receptor potential channels and metabotropic glutamate receptors. Food Chem Toxicol 67:113–22. https://doi.org/10.1016/j.fct.2014.02.021
Cashman NR, Durham HD, Blusztajn JK et al (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221. https://doi.org/10.1002/aja.1001940306
Article CAS PubMed Google Scholar
Eggett CJ, Crosier S, Manning P et al (2000) Development and characterization of a glutamate-sensitive motor neuron cell line. J Neurochem 74:1895–1902. https://doi.org/10.1046/j.1471-4159.2000.0741895.x
Article CAS PubMed Google Scholar
Ravindranath V (2002) Neurolathyrism: mitochondrial dysfunction in excitotoxicity mediated by L-beta-oxalyl aminoalanine. Neurochem Int 40(6):505–509. https://doi.org/10.1016/s0197-0186(01)00121-8
Article CAS PubMed Google Scholar
Kusama-Eguchi K, Yoshino N, Minoura A et al (2011) Sulfur amino acids deficiency cause by grass pea diet plays an important role in the toxicity of L-ß-ODAP by increasing the oxidative stress: Studies on a motor neuron cell line. Food Chem Toxicol 49:636–643. https://doi.org/10.1016/j.fct.2010.07.049
Article CAS PubMed Google Scholar
Dukhande VV, Kawikova I (2013) Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis 18:702. https://doi.org/10.1007/s10495-013-0836-4
Article CAS PubMed PubMed Central Google Scholar
Trumbull KA, McAllister D, Gandelman MM, Fung WY, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman JS (2012) Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol 45(1):137–144. https://doi.org/10.1016/j.nbd.2011.07.015
Urushitani M, Kurisu J, Tsukita K, Takahashi R (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 83:1030–1042. https://doi.org/10.1046/j.1471-4159.2002.01211.x
Hyun DH, Lee M, Halliwell B, Jenner P (2003) Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 86(2):363–373. https://doi.org/10.1046/j.1471-4159.2003.01841.x
Article CAS PubMed Google Scholar
Hirose D, Shirouzu T, Hirota M, Ohtsuka T, Senga T, Du M, Shimono A, Zhang X (2009) Species richness and species composition of fungal communities associated with cellulose decomposition at different altitudes on the Tibetan Plateau. J Plant Ecolo 2:217–224. https://doi.org/10.1093/jpe/rtp028
Evidente A, Sparapano L, Fierro O, Bruno G, Motta A (1999) Sapinofuranones A and B, two new 2(3H)-dihydrofuranones produced by sphaeropsis sapinea, a common pathogen of conifers. J Nat Prod 62(2):253–256. https://doi.org/10.1021/np980318t
Mondol MA, Farthouse J, Islam MT, Schüffler A, Laatsch H (2017) Metabolites from the endophytic fungus Curvularia sp. M12 Act as motoity inhibitors against Phytophthora capsici zoospores. J Nat Prod 80(2):347–355. https://doi.org/10.1021/acs.jnatprod.6b00785
Masi M, Maddau L, Linaldeddu BT, Cimmino A, D'Amico W, Scanu B, Evidente M, Tuzi A, Evidente A (2016) Bioactive secondary metabolites produced by the oak pathogen Diplodia corticola. J Agric Food Chem 64: 217–225. https://doi.org/10.1021/acs.jafc.5b05170
Suciati FJA, Lambert LK, Pierens GK, Bernhardt PV, Garson MJ (2013) Secondary metabolites of the sponge-derived fungus Acremonium persicinum. J Nat Prod 76(8):1432–1440. https://doi.org/10.1021/np4002114
Article CAS PubMed Google Scholar
Nagarapu L, Karnakanti S, Bantu S (2012) Total synthesis of sapinofuranone A from D-ribose. Tetrahedron 68:5829–5832. https://doi.org/10.1026/j.tet.2012.05.012
Yadav JS, Mandal SS, Reddy JSS, Srihari P (2011) Stereoselective total synthesis of (+)-sapinofuranone B. Tetrahedron 67:4620–4627. https://doi.org/10.1016/j.tet.2011.04.072
Comments (0)