The roles of intracellular proteolysis in cardiac ischemia–reperfusion injury

Abrahmsén L, Tom J, Burnier J, Butcher KA, Kossiakoff A, Wells JA (1991) Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30:4151–4159. https://doi.org/10.1021/bi00231a007

Article  PubMed  Google Scholar 

Adams-Cioaba MA, Krupa JC, Xu C, Mort JS, min J, (2011) Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun 2:197. https://doi.org/10.1038/ncomms1204

Article  CAS  PubMed  Google Scholar 

Agard NJ, Mahrus S, Trinidad JC, Lynn A, Burlingame AL, Wells JA (2012) Global kinetic analysis of proteolysis via quantitative targeted proteomics. Proc Natl Acad Sci USA 109:1913–1918. https://doi.org/10.1073/pnas.1117158109

Article  PubMed  PubMed Central  Google Scholar 

Ali MA, Cho WJ, Hudson B, Kassiri Z, Granzier H, Schulz R (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122:2039–2047. https://doi.org/10.1161/circulationaha.109.930222

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali MA, Stepanko A, Fan X, Holt A, Schulz R (2012) Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 423:1–5. https://doi.org/10.1016/j.bbrc.2012.05.005

Article  CAS  PubMed  Google Scholar 

Arama E, Baena-Lopez LA, Fearnhead HO (2021) Non-lethal message from the Holy Land: the first international conference on nonapoptotic roles of apoptotic proteins. FEBS J 288:2166–2183. https://doi.org/10.1111/febs.15547

Article  CAS  PubMed  Google Scholar 

Araya LE, Soni IV, Hardy JA, Julien O (2021) Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem Biol 16:2280–2296. https://doi.org/10.1021/acschembio.1c00456

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashizawa K, Wishart GJ, Katayama S, Takano D, Maeda M, Arakawa E, Tsuzuki Y (2006) Effects of calpain and Rho-kinase inhibitors on the acrosome reaction and motility of fowl spermatozoa in vitro. Reproduction 131:71–79. https://doi.org/10.1530/rep.1.00588

Article  CAS  PubMed  Google Scholar 

Baghirova S, Hughes BG, Poirier M, Kondo MY, Schulz R (2016) Nuclear matrix metalloproteinase-2 in the cardiomyocyte and the ischemic-reperfused heart. J Mol Cell Cardiol 94:153–161. https://doi.org/10.1016/j.yjmcc.2016.04.004

Article  CAS  PubMed  Google Scholar 

Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D (2006) Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281:22943–22952. https://doi.org/10.1074/jbc.M601025200

Article  CAS  PubMed  Google Scholar 

Bando Y, Kominami E, Katunuma N (1986) Purification and tissue distribution of rat cathepsin L. Biochem J 100:35–42. https://doi.org/10.1093/oxfordjournals.jbchem.a121703

Article  CAS  Google Scholar 

Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G (2019) The phosphoinositide kinase pikfyve promotes cathepsin-S-mediated major histocompatibility complex class II antigen presentation. iScience. 11:160–177. https://doi.org/10.1016/j.isci.2018.12.015

Article  CAS  PubMed  Google Scholar 

Barefield DY, McNamara JW, Lynch TL, Kuster DWD, Govindan S, Haar L, Wang Y, Taylor EN, Lorenz JN, Nieman ML, Zhu G, Luther PK, Varró A, Dobrev D, Ai X, Janssen PML, Kass DA, Jones WK, Gilbert RJ, Sadayappan S (2019) Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. J Mol Cell Cardiol 129:236–246. https://doi.org/10.1016/j.yjmcc.2019.03.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrett AJ, Kirschke H (1981) Cathepsin B, cathepsin H, and cathepsin L. Meth enzymol 80:535–561. https://doi.org/10.1016/s0076-6879(81)80043-2

Article  CAS  Google Scholar 

Barta J, Tóth A, Edes I, Vaszily M, Papp JG, Varró A, Papp Z (2005) Calpain-1-sensitive myofibrillar proteins of the human myocardium. Mol Cell Biochem 278:1–8. https://doi.org/10.1007/s11010-005-1370-7

Article  CAS  PubMed  Google Scholar 

Bassiouni W, Ali MAM, Schulz R (2021) Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 288:7162–7182. https://doi.org/10.1111/febs.15701

Article  CAS  PubMed  Google Scholar 

Bauer EA, Stricklin GP, Jeffrey JJ, Eisen AZ (1975) Collagenase production by human skin fibroblasts. Biochem Biophys Res Commun 64:232–240. https://doi.org/10.1016/0006-291x(75)90243-0

Article  CAS  PubMed  Google Scholar 

Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD (1995) Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci 4:1966–1976. https://doi.org/10.1002/pro.5560041002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beers C, Burich A, Kleijmeer MJ, Griffith JM, Wong P, Rudensky AY (2005) Cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo. J Immunol 174:1205–1212. https://doi.org/10.4049/jimmunol.174.3.1205

Article  CAS  PubMed  Google Scholar 

Bergman MR, Teerlink JR, Mahimkar R, Li L, Zhu BQ, Nguyen A, Dahi S, Karliner JS, Lovett DH (2007) Cardiac matrix metalloproteinase-2 expression independently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 292:H1847–H1860. https://doi.org/10.1152/ajpheart.00434.2006

Article  CAS  PubMed  Google Scholar 

Bertin J, Mendrysa SM, LaCount DJ, Gaur S, Krebs JF, Armstrong RC, Tomaselli KJ, Friesen PD (1996) Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J Virol 70:6251–6259. https://doi.org/10.1128/JVI.70.9.6251-6259.1996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biniossek ML, Nägler DK, Becker-Pauly C, Schilling O (2011) Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res 10:5363–5373. https://doi.org/10.1021/pr200621z

Article  CAS  PubMed  Google Scholar 

Black SC, Huang JQ, Rezaiefar P, Radinovic S, Eberhart A, Nicholson DW, Rodger IW (1998) Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. J Mol Cell Biol 30:733–742. https://doi.org/10.1006/jmcc.1998.0660

Article  CAS  Google Scholar 

Bode W, Gomis-Rüth FX, Stöckler W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins.’ FEBS Lett 331:134–140. https://doi.org/10.1016/0014-5793(93)80312-i

Article  CAS  PubMed  Google Scholar 

Bolli R, Marbán E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634. https://doi.org/10.1152/physrev.1999.79.2.609

Article  CAS  PubMed  Google Scholar 

Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451. https://doi.org/10.1038/onc.2008.310

Article  CAS  PubMed  Google Scholar 

Bräuninger H, Krüger S, Bacmeister L, Nyström A, Eyerich K, Westermann D, Lindner D (2023) Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res Cardiol 118:18. https://doi.org/10.1007/s00395-023-00987-2

Article  PubMed  PubMed Central  Google Scholar 

Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283. https://doi.org/10.1016/s0167-4838(99)00279-4

Article  CAS  PubMed  Google Scholar 

Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brömme D, Lecaille F (2009) Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 18:585–600. https://doi.org/10.1517/13543780902832661

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282:273–278. https://doi.org/10.1042/bj2820273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burston JJ, Xu L, Grabowska U, Tunblad K, Lindström E, Chapman V (2016) The Cathepsin K inhibitor L-006235 has analgesic and disease modifying properties in the MIA model of osteoarthritis. Osteoarthr Cartil 24:454.

Comments (0)

No login
gif