Nano-modified biosensors for detection of pathogenic diseases: The prospect of smart, multiplex and point-of-care testing

1. H.E. Sigerist. Civilization and disease. Cornell University Press, Ithaca, NY, USA, 2018. ISBN 9781501723452. https://books.google.rs/books?id=ihdiDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false DOI: https://doi.org/10.7591/9781501723452

2. S. Mukherjee. Emerging infectious diseases: Epidemiological perspective. Indian Journal of Dermatology 62 (2017) 459-467. https://doi.org/10.4103/ijd.IJD_379_17 DOI: https://doi.org/10.4103/ijd.IJD_379_17

3. D.E. Bloom, D. Cadarette. Infectious disease threats in the twenty-first century: strengthening the global response. Frontiers in Immunology 10 (2019) 549. https://doi.org/10.3389/fimmu.2019.00549 DOI: https://doi.org/10.3389/fimmu.2019.00549

4. A. Jutel. Classification, disease, and diagnosis. Perspectives in Biology and Medicine 54 (2011) 189-205. https://doi.org/10.1353/pbm.2011.0015 DOI: https://doi.org/10.1353/pbm.2011.0015

5. M.A. Moreno-Ibarra, Y. Villuendas-Rey, M.D. Lytras, C. Yáñez-Márquez, J.C. Salgado-Ramírez. Classification of diseases using machine learning algorithms: A comparative study. Mathematics 9 (2021) 1817. https://doi.org/10.3390/math9151817 DOI: https://doi.org/10.3390/math9151817

6. P.J. Hotez. The rise or fall of neglected tropical diseases in East Asia Pacific. Acta Tropica 202 (2020) 105182. https://doi.org/10.1016/j.actatropica.2019.105182 DOI: https://doi.org/10.1016/j.actatropica.2019.105182

7. R.G. Kerry, K.E. Ukhurebor, S. Kumari, G.K. Maurya , S. Patra, B. Panigrahi, S. Majhi, J.R. Rout, M. del Pilar Rodriguez-Torres, G. Das, H.S. Shin. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomaterials Science 9 (2021) 3576-602. https://doi.org/10.1039/D0BM02164D DOI: https://doi.org/10.1039/D0BM02164D

8. D.M. Morens, A.S. Fauci. Emerging infectious diseases: threats to human health and global stability. PLoS Pathogens 9 (2013) e1003467. https://doi.org/10.1371/journal.ppat.1003467 DOI: https://doi.org/10.1371/journal.ppat.1003467

9. R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, L.F. Wang, A. Wesolowski. Infectious disease in an era of global change. Nature Reviews Microbiology 20 (2022) 193-205. https://doi.org/10.1038/s41579-021-00639-z DOI: https://doi.org/10.1038/s41579-021-00639-z

10. L.C. Brazaca, P.L. Dos Santos, P.R. de Oliveira, D.P. Rocha, J.S. Stefano, C. Kalinke, R.A. Munoz, J.A. Bonacin, B.C. Janegitz, E. Carrilho. Biosensing strategies for the electrochemical detection of viruses and viral diseases–A review. Analytica Chimica Acta 1159 (2021) 338384. https://doi.org/10.1016/j.aca.2021.338384 DOI: https://doi.org/10.1016/j.aca.2021.338384

11. I. Irkham, A.U. Ibrahim, P.C. Pwavodi, F. Al-Turjman, Y.W. Hartati. Smart graphene-based electrochemical nanobiosensor for clinical diagnosis. Sensors 23 (2023) 2240. https://doi.org/10.3390/s23042240 DOI: https://doi.org/10.3390/s23042240

12. T.S. Dhahi, A.K. Dafhalla, S.A. Saad, D.M. Zayan, A.E. Ahmed, M.E. Elobaid, T. Adam, S.C. Gopinath. The importance, benefits, and future of nanobiosensors for infectious diseases. Biotechnology and Applied Biochemistry 71 (2024) 429-45. https://doi.org/10.1002/bab.2550 DOI: https://doi.org/10.1002/bab.2550

13. D. Bhatia, S. Paul, T. Acharjee, S.S. Ramachairy. Biosensors and their widespread impact on human health. Sensors International 5 (2024) 100257. https://doi.org/10.1016/j.sintl.2023.100257 DOI: https://doi.org/10.1016/j.sintl.2023.100257

14. A.U. Ibrahim, F. Al-Turjman, Z. Sa’id, M. Ozsoz. Futuristic CRISPR-based biosensing in the cloud and internet of things era: an overview. Multimedia Tools and Applications 81 (2022) 35143-71. https://doi.org/10.1007/s11042-020-09010-5 DOI: https://doi.org/10.1007/s11042-020-09010-5

15. S.A. Nakhjavani, H. Mirzajani, S. Cararra, M.C. Onbaşlı. Advances in biosensor technologies for infectious diseases detection. TrAC Trends in Analytical Chemistry 180 (2024) 117979. https://doi.org/10.1016/j.trac.2024.117979 DOI: https://doi.org/10.1016/j.trac.2024.117979

16. A.U. Ibrahim, C.W. Nwekwo, P.C. Pwavodi, S.N. Zakiyyah, M. Ozsoz, Y.W. Hartati. From nano-technology to AI: The next generation of CRISPR-based smart biosensors for infectious disease detection. Microchemical Journal 208 (2024) 112577. https://doi.org/10.1016/j.microc.2024.112577 DOI: https://doi.org/10.1016/j.microc.2024.112577

17. N.M. Noah, P.M. Ndangili. Current trends of nanobiosensors for point‐of‐care diagnostics. Journal of Analytical Methods in Chemistry 2019 (2019) 2179718. https://doi.org/10.1155/2019/2179718 DOI: https://doi.org/10.1155/2019/2179718

18. N. Singh, D.S. Dkhar, P. Chandra, U.P. Azad. Nanobiosensors design using 2D materials: Implementation in infectious and fatal disease diagnosis. Biosensors 13 (2023) 166. https://doi.org/10.3390/bios13020166 DOI: https://doi.org/10.3390/bios13020166

19. T.B. Rios, M.R. Maximiano, G.C. Feitosa, M. Malmsten, O.L. Franco. Nanosensors for animal infectious disease detection. Sensing and Bio-Sensing Research 43 (2024) 100622. https://doi.org/10.1016/j.sbsr.2024.100622 DOI: https://doi.org/10.1016/j.sbsr.2024.100622

20. M.B. Kulkarni, N.H. Ayachit, T.M. Aminabhavi. Recent advancements in nanobiosensors: current trends, challenges, applications, and future scope. Biosensors 12 (2022) 892. https://doi.org/10.3390/bios12100892 DOI: https://doi.org/10.3390/bios12100892

21. C. Wang, M. Liu, Z. Wang, S. Li, Y. Deng, N. He. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 37 (2021) 101092. https://doi.org/10.1016/j.nantod.2021.101092 DOI: https://doi.org/10.1016/j.nantod.2021.101092

22. F.E. Chen, P.W. Lee, A.Y. Trick, J.S. Park, L. Chen, K. Shah, H. Mostafa, K.C. Carroll, K. Hsieh, T.H. Wang. Point-of-care CRISPR-Cas-assisted SARS-CoV-2 detection in an automated and portable droplet magnetofluidic device. Biosensors and Bioelectronics 190 (2021) 113390. https://doi.org/10.1016/j.bios.2021.113390 DOI: https://doi.org/10.1016/j.bios.2021.113390

23. Y. Chen, R. Ren, H. Pu, X. Guo, J. Chang, G. Zhou, S. Mao, M. Kron, J. Chen. Field-effect transistor biosensor for rapid detection of Ebola antigen. Scientific Reports 7 (2017) 10974. https://doi.org/10.1038/s41598-017-11387-7 DOI: https://doi.org/10.1038/s41598-017-11387-7

24. A. Kaushik, M.A. Mujawar. Point of care sensing devices: better care for everyone. Sensors 18 (2018) 4303. https://doi.org/10.3390/s18124303 DOI: https://doi.org/10.3390/s18124303

25. F. Williams, A. Oke, I. Zachary. Public health delivery in the information age: the role of informatics and technology. Perspectives in Public Health 139 (2019) 236-54. https://doi.org/10.1177/1757913918802308 DOI: https://doi.org/10.1177/1757913918802308

26. B. Shu, M.K. Kirby, W.G. Davis, C. Warnes, J. Liddell, J. Liu, K.H. Wu, N. Hassell, A.J. Benitez, M.M. Wilson, M.W. Keller. Multiplex real-time reverse transcription PCR for influenza A virus, influenza B virus, and severe acute respiratory syndrome coronavirus 2. Emerging infectious diseases 27 (2021) 1821. https://doi.org/10.3201/eid2707.210462 DOI: https://doi.org/10.3201/eid2707.210462

27. J.A. Otoo, T.S. Schlappi. REASSURED multiplex diagnostics: a critical review and forecast. Biosensors 12 (2022) 124. https://doi.org/10.3390/bios12020124 DOI: https://doi.org/10.3390/bios12020124

28. C.L. Palenzuela, M. Pumera. (Bio) Analytical chemistry enabled by 3D printing: Sensors and biosensors. TrAC Trends in Analytical Chemistry 103 (2018) 110-8. https://doi.org/10.1016/j.trac.2018.03.016 DOI: https://doi.org/10.1016/j.trac.2018.03.016

29. M. Pateraki, K. Fysarakis, V. Sakkalis, G. Spanoudakis, I. Varlamis, M. Maniadakis, M. Lourakis, S. Ioannidis, N. Cummins, B. Schuller, E. Loutsetis. Biosensors and Internet of Things in smart healthcare applications: Challenges and opportunities. Wearable and Implantable Medical Devices (2020) 25-53. https://doi.org/10.1016/B978-0-12-815369-7.00002-1 DOI: https://doi.org/10.1016/B978-0-12-815369-7.00002-1

30. A. Boutayeb, The Burden of Communicable and Non-Communicable Diseases in Developing Countries, in Handbook of Disease Burdens and Quality of Life Measures, V.R. Preedy, R.R. Watson, Eds., Springer, New York, NY, USA, 2010, p. 16. https://doi.org/10.1007/978-0-387-78665-0_32 DOI: https://doi.org/10.1007/978-0-387-78665-0_32

31. B.B. Finlay, CIFAR Humans. Are noncommunicable diseases communicable? Science 367 (2020) 250-1. https://doi.org/10.1126/science.aaz3834 DOI: https://doi.org/10.1126/science.aaz3834

32. J. Dronina, U. Samukaite-Bubniene,A. Ramanavicius. Advances and insights in the diagnosis of viral infections. Journal of Nanobiotechnology (2021) 1-23. https://doi.org/10.1186/s12951-021-01081-2 DOI: https://doi.org/10.1186/s12951-021-01081-2

33. F.S. Cohen. How viruses invade cells. Biophysical Journal 110 (2016) 1028-32. https://doi.org/10.1016/j.bpj.2016.02.006 DOI: https://doi.org/10.1016/j.bpj.2016.02.006

34. S. Liu, Q. Li, H. Yang, P. Wang, X. Miao, Q. Feng. An in situ quenching electrochemiluminescence biosensor amplified with aptamer recognition-induced multi-DNA release for sensitive detection of pathogenic bacteria. Biosensors and Bioelectronics 196 (2022) 113744. https://doi.org/10.1016/j.bios.2021.113744 DOI: https://doi.org/10.1016/j.bios.2021.113744

35. S.N. Zakiyyah, A.U. Ibrahim, M.S. Babiker, S. Gaffar, M. Ozsoz, M.I. Zein, Y.W. Hartati. Detection of tropical diseases caused by mosquitoes using CRISPR-based biosensors. Tropical Medicine and Infectious Disease 7 (2022) 309. https://doi.org/10.3390/tropicalmed7100309 DOI: https://doi.org/10.3390/tropicalmed7100309

36. E. Abebe, G. Gugsa, M. Ahmed. Review on major food‐borne zoonotic bacterial pathogens. Journal of Tropical Medicine 2020 (2020) 4674235. https://doi.org/10.1155/2020/4674235 DOI: https://doi.org/10.1155/2020/4674235

37. T.L. Pitt, M.R. Barer. Classification, identification and typing of micro-organisms. Medical Microbiology 24 (2012) 24-38. https://doi.org/10.1016/B978-0-7020-4089-4.00018-4 DOI: https://doi.org/10.1016/B978-0-7020-4089-4.00018-4

38. M.D. Pavlova, A.M. Asaturova, A.E. Kozitsyn. Bacterial cell shape: Some features of ultrastructure, evolution, and ecology. Biology Bulletin Reviews 12 (2022) 254-65. https://doi.org/10.1134/S2079086422030070 DOI: https://doi.org/10.1134/S2079086422030070

39. A. Mai-Prochnow, M. Clauson, J. Hong, A.B. Murphy. Gram positive and Gram-negative bacteria differ in their sensitivity to cold plasma. Scientific Reports 6 (2016) 38610. https://doi.org/10.1038/srep38610 DOI: https://doi.org/10.1038/srep38610

40. F. Zang, Z. Su, L. Zhou, K. Konduru, G. Kaplan, S.Y. Chou. Ultrasensitive Ebola virus antigen sensing via 3D nanoantenna arrays. Advanced Materials 31 (2019) 1902331. https://doi.org/10.1002/adma.201902331 DOI: https://doi.org/10.1002/adma.201902331

41. A.D. Chowdhury, K. Takemura, T.C. Li, T. Suzuki, E.Y. Park. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nature Communications 10 (2019) 3737. https://doi.org/10.1038/s41467-019-11644-5 DOI: https://doi.org/10.1038/s41467-019-11644-5

42. L.A. Layqah, S. Eissa. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchimica Acta 186 (2019) 224. https://doi.org/10.1007/s00604-019-3345-5 DOI: https://doi.org/10.1007/s00604-019-3345-5

43. R.M. Torrente-Rodríguez, H. Lukas, J. Tu, J. Min, Y. Yang, C. Xu, H.B. Rossiter, W. Gao. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 3 (2020) 1981-1998. https://doi.org/10.1016/j.matt.2020.09.027 DOI: https://doi.org/10.1016/j.matt.2020.09.027

44. Q.Y. Siew, E.L. Pang, H.S. Loh, M.T. Tan. Highly sensitive and specific graphene/TiO2 impedimetric immunosensor based on plant-derived tetravalent envelope glycoprotein domain III (EDIII) probe antigen for dengue diagnosis. Biosensors and Bioelectronics 176 (2021) 112895. https://doi.org/10.1016/j.bios.2020.112895 DOI: https://doi.org/10.1016/j.bios.2020.112895

45. Y. Lee, J. Choi, H.K. Han, S. Park, S.Y. Park, C. Park, C. Baek, T. Lee, J. Min. Fabrication of ultrasensitive electrochemical biosensor for dengue fever viral RNA Based on CRISPR/Cpf1 reaction. Sensors and Actuators B 326 (2021) 128677. https://doi.org/10.1016/j.snb.2020.128677 DOI: https://doi.org/10.1016/j.snb.2020.128677

46. X. Chen, S. Kang, M.A. Ikbal, Z. Zhao, Y. Pan, J. Zuo, L. Gu, C. Wang. Synthetic nanobody-functionalized nanoparticles for accelerated development of rapid, accessible detection of viral antigens. Biosensors and Bioelectronics 202 (2022) 113971. https://doi.org/10.1016/j.bios.2022.113971 DOI: https://doi.org/10.1016/j.bios.2022.113971

47. S. Yadav, M.A. Sadique, P. Ranjan, R. Khan, N. Sathish, A.K. Srivastava. Polydopamine decorated MoS 2 nanosheet based electrochemical immunosensor for sensitive detection of SARS-CoV-2 nucleocapsid protein in clinical samples. Journal of Materials Chemistry B 10 (2022) 8478-8489. https://doi.org/10.1039/D2TB01409B DOI: https://doi.org/10.1039/D2TB01409B

48. A. Sangili, T. Kalyani, S.M. Chen, K. Rajendran, S.K. Jana. Label-free electrochemical immunosensor based on l-cysteine-functionalized AuNP on reduced graphene oxide for the detection of dengue virus E-protein in dengue blood serum. Composites B 238 (2022) 109876. https://doi.org/10.1016/j.compositesb.2022.109876 DOI: https://doi.org/10.1016/j.compositesb.2022.109876

49. R. Del Caño, T. García-Mendiola, D. García-Nieto, R. Álvaro, M. Luna, H.A. Iniesta, R. Coloma, C.R. Diaz, P. Milán-Rois, M. Castellanos, M. Abreu. Amplification-free detection of SARS-CoV-2 using gold nanotriangles functionalized with oligonucleotides. Microchimica Acta 189 (2022) 171. https://doi.org/10.1007/s00604-022-05272-y DOI: https://doi.org/10.1007/s00604-022-05272-y

50. B.A. Braz, M. Hospinal-Santiani, G. Martins, J.L. Gogola, M.G. Valenga, B.C. Beirão, M.F. Bergamini, L.H. Marcolino-Junior, V. Thomaz-Soccol, C.R. Soccol. Gold-binding peptide as a selective layer for electrochemical detection of SARS-CoV-2 antibodies. Talanta 257 (2023) 124348. https://doi.org/10.1016/j.talanta.2023.124348 DOI: https://doi.org/10.1016/j.talanta.2023.124348

51. S. Freko, M. Nikić, D. Mayer, L.I. Weiß, F.C. Simmel, B. Wolfrum. Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry. ACS Sensors 9 (2024) 6197-206. https://doi/10.1021/acssensors.4c02060 DOI: https://doi.org/10.1021/acssensors.4c02060

52. H. Kaur, M. Shorie, M. Sharma, A.K. Ganguli, P. Sabherwal. Bridged Rebar Graphene functionalized aptasensor for pathogenic E. coli O78: K80: H11 detection. Biosensors and Bioelectronics 98 (2017) 486-493. https://doi.org/10.1016/j.bios.2017.07.004 DOI: https://doi.org/10.1016/j.bios.2017.07.004

53. X. Zhang, G. Xie, D. Gou, P. Luo, Y. Yao, H. Chen. A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosensors and Bioelectronics 142 (2019) 111486. https://doi.org/10.1016/j.bios.2019.111486 DOI: https://doi.org/10.1016/j.bios.2019.111486

54. L. Cui, W. Chang, R. Wei, W. Chen, Y. Tang, X. Yue. Aptamer and Ru (bpy) 32+‐AuNPs‐based electrochemiluminescence biosensor for accurate detecting Listeria monocytogenes. Journal of Food Safety 42 (2022) e13008. https://doi.org/10.1111/jfs.13008 DOI: https://doi.org/10.1111/jfs.13008

55. E. Sohouli, M. Ghalkhani, T. Zargar, Y. Joseph, M. Rahimi-Nasrabadi, F. Ahmadi, M.E. Plonska-Brzezinska, H. Ehrlich. A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochimica Acta 403 (2022) 139633. https://doi.org/10.1016/j.electacta.2021.139633 DOI: https://doi.org/10.1016/j.electacta.2021.139633

56. R. Abedi, J.B. Raoof, M. Mohseni, A.B. Hashkavayi. Development of a label-free impedimetric aptasensor for the detection of Acinetobacter baumannii bacteria. Analytical Biochemistry 679 (2023) 115288. https://doi.org/10.1016/j.ab.2023.115288 DOI: https://doi.org/10.1016/j.ab.2023.115288

57. X. Zhong, Y. Deng, Q. Yang, S. Yi, H. Qiu, L. Chen, S. Hu. An extracellular electron transfer enhanced electrochemiluminescence aptasensor for Escherichia coli analysis. Analyst 148 (2023) 4414-4420. https://doi.org/10.1039/D3AN01038D DOI: https://doi.org/10.1039/D3AN01038D

58. A.K. Yadav, D. Verma, S. Tabassum, P.R. Solanki. Functionalized graphitic carbon nitride based aptasensing platform for electrochemical detection of Helicobacter pylori. IEEE Sensors Letters 7 (2023) 4503604. https://doi.org/10.1109/LSENS.2023.3327589 DOI: https://doi.org/10.1109/LSENS.2023.3327589

59. H. Jaradat, A. Al-Hamry, M. Ibbini, N. Fourati, O. Kanoun. Novel sensitive electrochemical immunosensor development for the selective detection of HopQ H. pylori bacteria biomarker. Biosensors 13 (2023) 527. https://doi.org/10.3390/bios13050527 DOI: https://doi.org/10.3390/bios13050527

60. P. Wang, G. Yu, J. Wei, X. Liao, Y. Zhang, Y. Ren, C. Zhang, Y. Wang, D. Zhang, J. Wang, Y. Wang. A single thiolated-phage displayed nanobody-based biosensor for label-free detection of foodborne pathogen. Journal of Hazardous Materials 443 (2023) 130157. https://doi.org/10.1016/j.jhazmat.2022.130157 DOI: https://doi.org/10.1016/j.jhazmat.2022.130157

61. B.A. Braz, M. Hospinal-Santiani, G. Martins, B.C. Beirão, M.F. Bergamini, L.H. Marcolino-Junior, C.R. Soccol, V. Thomaz-Soccol. Disposable electrochemical platform based on solid-binding peptides and carbon nanomaterials: An alternative device for leishmaniasis detection. Microchimica Acta 190 (2023) 321. https://doi.org/10.1007/s00604-023-05891-z DOI: https://doi.org/10.1007/s00604-023-05891-z

62. S. Hu, X. Zhong, Y. Deng, Y. Deng, L. Chen. An initial check-reexamination strategy for analysis of H. Pylori DNA and single-nucleotide variants. Sensors and Actuators B 398 (2024) 134746. https://doi.org/10.1016/j.snb.2023.134746 DOI: https://doi.org/10.1016/j.snb.2023.134746

63. U. Anik, Electrochemical medical biosensors for POC applications, Woodhead Publishing, New Delhi, India, 2017, p. 17. https://doi.org/10.1016/B978-0-08-100072-4.00012-5 DOI: https://doi.org/10.1016/B978-0-08-100072-4.00012-5

64. S. Jain, M. Nehra, R. Kumar, N. Dilbaghi, T. Hu, S. Kumar, A. Kaushik, C.Z. Li. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosensors and Bioelectronics 179 (2021) 113074. https://doi.org/10.1016/j.bios.2021.113074 DOI: https://doi.org/10.1016/j.bios.2021.113074

65. A. Gowri, N.A. Kumar, B.S. Anand. Recent advances in nanomaterials-based biosensors for point of care (PoC) diagnosis of COVID-19–a minireview. TrAC Trends in Analytical Chemistry 137 (2021) 116205. https://doi.org/10.1016/j.trac.2021.116205 DOI: https://doi.org/10.1016/j.trac.2021.116205

66. V. Chaudhary, V. Khanna, H.T. Awan, K. Singh, M. Khalid, Y.K. Mishra, S. Bhansali, C.Z. Li, A. Kaushik. Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors. Biosensors and Bioelectronics 220 (2023) 114847. https://doi.org/10.1016/j.bios.2022.114847 DOI: https://doi.org/10.1016/j.bios.2022.114847

67. Y. Nur, M.I. Zein, I. Irkham, S. Gaffar, T. Subroto, Y.W. Hartati. Cerium oxide nanoparticles-assisted aptasensor for chronic myeloid leukaemia detection. ADMET and DMPK 12 (2024) 623-35. https://doi.org/10.5599/admet.2404 DOI: https://doi.org/10.5599/admet.2404

68. M.I. Zein, C.Y. Kharismasari, A. Hardianto, S.N. Zakiyyah, R. Amalia, M. Ozsoz, M. Mirasoli, Y.W. Hartati. A CRISPR/Cas12a electrochemical biosensing to detect pig mtDNA D-loop for ensuring food authenticity. Sensing and Bio-Sensing Research 1 (2025) 100755. https://doi.org/10.1016/j.sbsr.2025.100755 DOI: https://doi.org/10.1016/j.sbsr.2025.100755

69. S. Akgönüllü, A. Denizli. Recent advances in optical biosensing approaches for biomarkers detection. Biosensors and Bioelectronics: X. 12 (2022) 100269. https://doi.org/10.1016/j.biosx.2022.100269 DOI: https://doi.org/10.1016/j.biosx.2022.100269

70. S.R. Pour, D. Calabria, A. Emamiamin, E. Lazzarini, A. Pace, M. Guardigli, M. Zangheri, M. Mirasoli. Electrochemical vs. optical biosensors for point-of-care applications: A critical Review. Chemosensors 11 (2023) 546. https://doi.org/10.3390/chemosensors11100546 DOI: https://doi.org/10.3390/chemosensors11100546

71. S. Mostufa, B. Rezaei, S. Ciannella, P. Yari, J. Gómez-Pastora, R. He, K. Wu. Advancements and perspectives in optical biosensors. ACS Omega 9 (2024) 24181-24202. https://doi/full/10.1021/acsomega.4c01872 DOI: https://doi.org/10.1021/acsomega.4c01872

72. S. Sang, Y. Wang, Q. Feng, Y. Wei, J. Ji, W. Zhang. Progress of new label-free techniques for biosensors: A review. Critical Reviews in Biotechnology 36 (2016) 465-481. https://doi.org/10.3109/07388551.2014.991270 DOI: https://doi.org/10.3109/07388551.2014.991270

73. N. Khansili, G. Rattu, P.M. Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sensors and Actuators B 265 (2018) 35-49. https://doi.org/10.1016/j.snb.2018.03.004 DOI: https://doi.org/10.1016/j.snb.2018.03.004

74. J.C. Ramirez, D. Grajales García, J. Maldonado, A. Fernández-Gavela. Current trends in photonic biosensors: advances towards multiplexed integration. Chemosensors 10 (2022) 398. https://doi.org/10.3390/chemosensors10100398 DOI: https://doi.org/10.3390/chemosensors10100398

75. P.S. Pakchin, F. Fathi, H. Samadi, K. Adibkia. Recent Advances in Receptor-Based Optical Biosensors for the Detection of Multiplex Biomarkers. Talanta 281 (2024) 126852. https://doi.org/10.1016/j.talanta.2024.126852 DOI: https://doi.org/10.1016/j.talanta.2024.126852

76. H.E. Kim, A. Schuck, S.H. Lee, Y. Lee, M. Kang, Y.S. Kim. Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests. Biosensors and Bioelectronics 182 (2021) 113168. https://doi.org/10.1016/j.bios.2021.113168 DOI: https://doi.org/10.1016/j.bios.2021.113168

77. G. Seo, G. Lee, M.J. Kim, S.H. Baek, M. Choi, K.B. Ku, C.S. Lee, S. Jun, D. Park, H.G. Kim, S.J. Kim. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano 14 (2020) 5135-5142. https://doi.org/10.1021/acsnano.0c02823 DOI: https://doi.org/10.1021/acsnano.0c02823

78. A. Yakoh, U. Pimpitak, S. Rengpipat, N. Hirankarn, O. Chailapakul, S. Chaiyo. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosensors and Bioelectronics 176 (2021) 112912. https://doi.org/10.1016/j.bios.2020.112912 DOI: https://doi.org/10.1016/j.bios.2020.112912

79. N.A. Parmin, U. Hashim, S.C. Gopinath, F.A. Dahalan, C.H. Voon, M.N. Uda, M.A. Uda, Z. Rejali, A. Afzan, F.N. Jaapar, F.S. Halim. A mini review of electrochemical genosensor based biosensor diagnostic system for infectious diseases. Environmental and Toxicology Management 1 (2021) 14-17. https://doi.org/10.33086/etm.v1i1.2038 DOI: https://doi.org/10.33086/etm.v1i1.2038

80. A. Babaei, A. Pouremamali, N. Rafiee, H. Sohrabi, A. Mokhtarzadeh, M. de la Guardia. Genosensors as an alternative diagnostic sensing approaches for specific detection of virus species: a review of common techniques and outcomes. TrAC Trends in Analytical Chemistry 155 (2022) 116686. https://doi.org/10.1016/j.trac.2022.116686 DOI: https://doi.org/10.1016/j.trac.2022.116686

81. H.A. Bagheri, J.B. Raoof, R. Azimi, R. Ojani. Label-free and sensitive aptasensor based on dendritic gold nanostructures on functionalized SBA-15 for determination of chloramphenicol. Analytical and Bioanalytical Chemistry 408 (2016) 2557-2565. https://doi.org/10.1007/S00216-016-9358-6 DOI: https://doi.org/10.1007/s00216-016-9358-6

82. W.Q. Lim, Z. Gao. Metal oxide nanoparticles in electroanalysis. Electroanalysis 27 (2015) 2074-2090. https://doi.org/10.1002/elan.201500024 DOI: https://doi.org/10.1002/elan.201500024

83. Y. He, Y. Ren, B. Guo, Y. Yang, Y. Ji, D. Zhang, J. Wang, Y. Wang, H. Wang. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chemistry 310 (2020) 125942. https://doi.org/10.1016/j.foodchem.2019.125942 DOI: https://doi.org/10.1016/j.foodchem.2019.125942

84. Y. He, F. Tian, J. Zhou, Q. Zhao, R. Fu, B. Jiao. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. Journal of Hazardous Materials 388 (2020) 121758. https://doi.org/10.1016/j.jhazmat.2019.121758 DOI: https://doi.org/10.1016/j.jhazmat.2019.121758

85. K.J. Land, D.I. Boeras, X.S. Chen, A.R. Ramsay, R.W. Peeling. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nature microbiology 4 (2019) 46-54. https://doi.org/10.1038/s41564-018-0295-3 DOI: https://doi.org/10.1038/s41564-018-0295-3

86. F. Haghayegh, A. Norouziazad, E. Haghani, A.A. Feygin, R.H. Rahimi, H.A. Ghavamabadi, D. Sadighbayan, F. Madhoun, M. Papagelis, T. Felfeli, R. Salahandish. Revolutionary Point‐of‐Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. Advanced Science 11 (2024) 2400595. https://doi.org/10.1002/advs.202400595 DOI: https://doi.org/10.1002/advs.202400595

87. R. Kaur, S.K. Sharma, Tripathy. Advantages and limitations of environmental nanosensors, in Advances in nanosensors for biological and environmental analysis, A. Deep, S. Kumar, Eds., Elsevier, Amsterdam, Netherlands, 2019 p. 13. https://doi.org/10.1016/B978-0-12-817456-2.00007-3 DOI: https://doi.org/10.1016/B978-0-12-817456-2.00007-3

88. S. Sreejith, J. Ajayan, J.M. Radhika, N.U. Reddy, M. Manikandan. Recent advances in nano biosensors: An overview. Measurement 236 (2024) 115073. https://doi.org/10.1016/j.measurement.2024.115073 DOI: https://doi.org/10.1016/j.measurement.2024.115073

89. K. Pal, N. Asthana, A.A. Aljabali, S.K. Bhardwaj, S. Kralj, A. Penkova, S. Thomas, T. Zaheer, F. Gomes de Souza. A critical review on multifunctional smart materials ‘nanographene’emerging avenue: nano-imaging and biosensor applications. Critical Reviews in Solid State and Materials Sciences 47 (2022) 691-707. https://doi.org/10.1080/10408436.2021.1935717 DOI: https://doi.org/10.1080/10408436.2021.1935717

90. M.A. Darwish, W. Abd-Elaziem, A. Elsheikh, A.A. Zayed. Advancements in nanomaterials for nanosensors: a comprehensive review. Nanoscale Advances 6(16) (2024) 4015-4046. https://doi.org/10.1039/D4NA00214H DOI: https://doi.org/10.1039/D4NA00214H

91. E.C. Welch, J.M. Powell, T.B. Clevinger, A.E. Fairman, A. Shukla. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Advanced Functional Materials 31 (2021) 2104126. https://doi.org/10.1002/adfm.202104126 DOI: https://doi.org/10.1002/adfm.202104126

92. S.V. Kaymaz, H.M. Nobar, H. Sarıgül, C. Soylukan, L. Akyüz, M. Yüce. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Advances in Colloid and Interface Science 322 (2023) 103035. https://doi.org/10.1016/j.cis.2023.103035 DOI: https://doi.org/10.1016/j.cis.2023.103035

93. H. Tavakoli, S. Mohammadi, X. Li, G. Fu, X. Li. Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis. TrAC Trends in Analytical Chemistry 157 (2022) 116806. https://doi.org/10.1016/j.trac.2022.116806 DOI: https://doi.org/10.1016/j.trac.2022.116806

94. H. Adam, S.C. Gopinath, M.M. Arshad, T. Adam, U. Hashim, Z. Sauli, M.A. Fakhri, S. Subramaniam, Y. Chen, S. Sasidharan, Y.S. Wu. Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: an overview. Journal of the Taiwan Institute of Chemical Engineers 146 (2023) 104814. https://doi.org/10.1016/j.jtice.2023.104814 DOI: https://doi.org/10.1016/j.jtice.2023.104814

95. M. Kumari, V. Gupta, N. Kumar, R.K. Arun. Microfluidics-based nanobiosensors for healthcare monitoring. Molecular Biotechnology 66 (2024) 378-401. https://doi.org/10.1007/s12033-023-00760-9 DOI: https://doi.org/10.1007/s12033-023-00760-9

96. A. Umar Ibrahim, P.C. Pwavodi, M. Ozsoz, F. Al-Turjman, T. Galaya, J.J. Agbo. Crispr biosensing and Ai driven tools for detection and prediction of Covid-19. Journal of Experimental & Theoretical Artificial Intelligence 35 (2023) 489-505. https://doi.org/10.1080/0952813X.2021.1952652 DOI: https://doi.org/10.1080/0952813X.2021.1952652

97. I. Irkham, A.U. Ibrahim, P.C. Pwavodi, C.W. Nwekwo, Y.W. Hartati. CRISPR-based biosensor for the detection of Marburg and Ebola virus. Sensing and Bio-Sensing Research 43 (2024) 100601. https://doi.org/10.1016/j.sbsr.2023.100601 DOI: https://doi.org/10.1016/j.sbsr.2023.100601

Comments (0)

No login
gif