[1] D.M. Mudie, G.L. Amidon, G.E. Amidon. Physiological parameters for oral delivery and in vitro testing. Molecular Pharmaceutics 7 (2010) 1388-1405. https://doi.org/10.1021/mp100149j DOI: https://doi.org/10.1021/mp100149j
[2] D. Riethorst, R. Mols, G. Duchateau, J. Tack, J. Brouwers, P. Augustijns. Characterization of Human Duodenal Fluids in Fasted and Fed State Conditions. Journal of Pharmaceutical Sciences 105 (2016) 673-681. https://doi.org/10.1002/jps.24603 DOI: https://doi.org/10.1002/jps.24603
[3] L.G.A.-A. Santos, H. Musther, N. Bala, N. Deferm, G. Patel, J. Brouwers, D.B. Turner. Gastrointestinal Bile Salt Concentrations in Healthy Adults Under Fasted and Fed Conditions: A Systematic Review and Meta-Analysis for Mechanistic Physiologically-Based Pharmacokinetic (PBPK) Modelling. The AAPS Journal 27 (2025) 31. https://doi.org/10.1208/s12248-025-01016-x DOI: https://doi.org/10.1208/s12248-025-01016-x
[4] Y. Akiyama, S. Ito, T. Fujita, K. Sugano. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. European Journal of Pharmaceutical Sciences 155 (2020) 105543. https://doi.org/10.1016/j.ejps.2020.105543 DOI: https://doi.org/10.1016/j.ejps.2020.105543
[5] K. Sugano, M. Kataoka, C. da Costa Mathews, S. Yamashita. Prediction of food effect by bile micelles on oral drug absorption considering free fraction in intestinal fluid. European Journal of Pharmaceutical Sciences 40 (2010) 118-124. https://doi.org/10.1016/j.ejps.2010.03.011 DOI: https://doi.org/10.1016/j.ejps.2010.03.011
[6] B. Wuyts, D. Riethorst, J. Brouwers, J. Tack, P. Annaert, P. Augustijns. Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability. International Journal of Pharmaceutics 478 (2015) 736-744. https://doi.org/10.1016/j.ijpharm.2014.12.021 DOI: https://doi.org/10.1016/j.ijpharm.2014.12.021
[7] B. Wuyts, D. Riethorst, J. Brouwers, J. Tack, P. Annaert, P. Augustijns. Evaluation of fasted state human intestinal fluid as apical solvent system in the Caco-2 absorption model and comparison with FaSSIF. European Journal of Pharmaceutical Sciences 67 (2015) 126-135. https://doi.org/10.1016/j.ejps.2014.11.010 DOI: https://doi.org/10.1016/j.ejps.2014.11.010
[8] T. Yamaguchi, C. Ikeda, Y. Sekine. Intestinal Absorption of β-Adrenergic Blocking Agent Nadolol. I.: Comparison of Absorption Behaivor of Nadolol with Those of Other β-Blocking Agents in Rats. Chemical and Pharmaceutical Bulletin 34 (1986) 3362-3369. https://doi.org/10.1248/cpb.34.3362 DOI: https://doi.org/10.1248/cpb.34.3362
[9] F.G.J. Poelma, R. Breäs, J.J. Tukker, D.J.A. Crommelin. Intestinal Absorption of Drugs. The Influence of Mixed Micelles on on the Disappearance Kinetics of Drugs from the Small Intestine of the Rat. Journal of Pharmacy and Pharmacology 43 (1991) 317-324. https://doi.org/10.1111/j.2042-7158.1991.tb06697.x DOI: https://doi.org/10.1111/j.2042-7158.1991.tb06697.x
[10] F. Ingels, B. Beck, M. Oth, P. Augustijns. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. International Journal of Pharmaceutics 274 (2004) 221-232 DOI: https://doi.org/10.1016/j.ijpharm.2004.01.014
[11] A. Glomme, J. Mrz, J.B. Dressman. Predicting the Intestinal Solubility of Poorly Soluble Drugs. in: B. Testa, S.D. Krmer, H. Wunderli-Allenspach, G. Folkers (Eds.), Pharmacokinetic Profiling in Drug Research, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006: pp. 259-280. https://doi.org/10.1002/9783906390468.ch16 DOI: https://doi.org/10.1002/9783906390468.ch16
[12] A. Avdeef. Absorption and Drug Development: Solubility, Permeability, and Charge State, Second Edition, John Wiley & Sons, Inc., 2012. https://doi.org/10.1002/9781118286067 DOI: https://doi.org/10.1002/9781118286067
[13] G.P. van Balen, G. Caron, G. Ermondi, A. Pagliara, T. Grandi, G. Bouchard, R. Fruttero, P.-A. Carrupt, B. Testa. Lipophilicity behaviour of the zwitterionic antihistamine cetirizine in phosphatidylcholine liposomes/water systems. Pharmaceutical Research 18 (2001) 694-701. https://doi.org/10.1023/a:1011049830615 DOI: https://doi.org/10.1023/A:1011049830615
[14] A. Avdeef, K.J. Box, J.E.A. Comer, C. Hibbert, K.Y. Tam. pH-Metric logP 10. Determination of liposomal membrane-water partition coefficients of lonizable drugs. Pharmaceutical Research 15 (1998) 209-215. https://doi.org/10.1023/A:1011954332221 DOI: https://doi.org/10.1023/A:1011954332221
[15] M.A. Schwarz, R.H.H. Neubert, G. Dongowski. Characterization of interactions between bile salts and drugs by micellar electrokinetic capillary chromatography. Part I. Pharmaceutical Research 13 (1996) 1174-1180. https://doi.org/10.1023/A:1016051917608 DOI: https://doi.org/10.1023/A:1016051917608
[16] B.D. Castro, P. Gameiro, C. Guimarães, J.L.F.C. Lima, S. Reis. Partition coefficients of β-blockers in bile salt/lecithin micelles as a tool to assess the role of mixed micelles in gastrointestinal absorption. Biophysical Chemistry 90 (2001) 31-43. https://doi.org/10.1016/S0301-4622(01)00126-0 DOI: https://doi.org/10.1016/S0301-4622(01)00126-0
[17] S. Modi, B.D. Anderson. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Molecular Pharmaceutics 10 (2013) 3076-3089. https://doi.org/10.1021/mp400154a DOI: https://doi.org/10.1021/mp400154a
[18] K. Yano, Y. Masaoka, M. Kataoka, S. Sakuma, S. Yamashita. Mechanisms of membrane transport of poorly soluble drugs: role of micelles in oral absorption processes. Journal of Pharmaceutical Sciences 99 (2010) 1336-1345. https://doi.org/10.1002/jps.21919 DOI: https://doi.org/10.1002/jps.21919
[19] A. Fuchs, M. Leigh, B. Kloefer, J.B. Dressman. Advances in the design of fasted state simulating intestinal fluids: FaSSIF-V3. European Journal of Pharmaceutics and Biopharmaceutics 94 (2015) 229-240. https://doi.org/10.1016/j.ejpb.2015.05.015 DOI: https://doi.org/10.1016/j.ejpb.2015.05.015
[20] K. Box, J. Comer. Using Measured pKa, LogP and Solubility to Investigate Supersaturation and Predict BCS Class. Current Drug Metabolism 9 (2008) 869-878. https://doi.org/10.2174/138920008786485155 DOI: https://doi.org/10.2174/138920008786485155
[21] T. Gramatté, R. Oertel, B. Terhaag, W. Kirch. Direct demonstration of small intestinal secretion and site-dependent absorption of the β-blocker talinolol in humans. Clinical Pharmacology and Therapeutics 59 (1996) 541-549. https://doi.org/10.1016/S0009-9236(96)90182-4 DOI: https://doi.org/10.1016/S0009-9236(96)90182-4
[22] Astellas Pharma Inc. Tamsulosin Drug Product Infomation. https://amn.astellas.jp/common/pdfviewer.html/content/dam/jp/amn/jp/ja/di/doc/Pdfs/DocNo202412103_y.pdf.
[23] KYORIN Pharmaceutical Co., Ltd. Beova Drug Product information. https://www.kyorin-pharm.co.jp/prodinfo/medicine/pdf/i_beova.pdf.
[24] Kyowa Kirin Co., Ltd. Olopatadine Drug Product Information. https://medical.kyowakirin.co.jp/site/drugpdf/interv/alk_in.pdf.
[25] R. Takeuchi, K. Sugano. Food and bile micelle binding of zwitterionic antihistamine drugs. ADMET and DMPK 12 (2024) 649-656. https://doi.org/10.5599/admet.2454 DOI: https://doi.org/10.5599/admet.2454
[26] T. Sumiji, K. Sugano. Food and bile micelle binding of quaternary ammonium compounds. ADMET and DMPK 11 (2023) 409-417. https://doi.org/10.5599/admet.2023 DOI: https://doi.org/10.5599/admet.2023
[27] K. Sugano. Biopharmaceutics modeling and simulations: theory, practice, methods, and applications, John Wiley & Sons, 2012. ISBN: 978-1-118-35432-2 DOI: https://doi.org/10.1002/9781118354339
[28] N. Sun, A. Avdeef. Biorelevant pK a (37°C) predicted from the 2D structure of the molecule and its pK a at 25°C. Journal of Pharmaceutical and Biomedical Analysis 56 (2011) 173-182. https://doi.org/10.1016/j.jpba.2011.05.007 DOI: https://doi.org/10.1016/j.jpba.2011.05.007
[29] S. Reis, C.G. Moutinho, E. Pereira, B. de Castro, P. Gameiro, J.L. Lima. β-Blockers and benzodiazepines location in SDS and bile salt micellar systems: an ESR study. Journal of Pharmaceutical and Biomedical Analysis 45 (2007) 62-69. https://doi.org/10.1016/j.jpba.2007.05.023 DOI: https://doi.org/10.1016/j.jpba.2007.05.023
[30] A. Pagliara, P.A. Carrupt, G. Caron, P. Gaillard, B. Testa. Lipophilicity profiles of ampholytes. Chemical Reviews 97 (1997) 3385-3400. https://doi.org/10.1021/cr9601019 DOI: https://doi.org/10.1021/cr9601019
[31] A. Ebert, C. Dahley. Can membrane permeability of zwitterionic compounds be predicted by the solubility diffusion model? European Journal of Pharmaceutical Sciences (2024) 106819. https://doi.org/10.1016/j.ejps.2024.106819 DOI: https://doi.org/10.1016/j.ejps.2024.106819
[32] G. Dongowski, B. Fritzsch, J. Giessler, A. Härtl, O. Kuhlmann, R.H.H. Neubert. The influence of bile salts and mixed micelles on the pharmacokinetics of quinine in rabbits. European Journal of Pharmaceutics and Biopharmaceutics 60 (2005) 147-151. https://doi.org/10.1016/j.ejpb.2005.01.003 DOI: https://doi.org/10.1016/j.ejpb.2005.01.003
[33] F.L. Holzem, R.L. Mikkelsen, J.P. Schaffland, C. Stillhart, M. Brandl, A. Bauer-Brandl. A high-throughput micro-scale workflow to quantify molecularly dissolved drug concentrations under solubilizing conditions. Journal of Pharmaceutical Sciences 114 (2025) 1485-1494. https://doi.org/10.1016/j.xphs.2024.12.027 DOI: https://doi.org/10.1016/j.xphs.2024.12.027
Comments (0)