1. M. Zamani, S. Alizadeh-Tabari, V. Ajmera, S. Singh, M.H. Murad, R. Loomba. Global Prevalence of Advanced Liver Fibrosis and Cirrhosis in the General Population: A Systematic Review and Meta-analysis. Clinical Gastroenterology and Hepatology 23 (2025) 1123-1134. https://doi.org/10.1016/J.CGH.2024.08.020 DOI: https://doi.org/10.1016/j.cgh.2024.08.020
2. V. Tiwari, S. Shandily, J. Albert, V. Mishra, M. Dikkatwar, R. Singh, S.K. Sah, S. Chand. Insights into medication-induced liver injury: Understanding and management strategies. Toxicology Reports 14 (2025) 101976. https://doi.org/10.1016/J.TOXREP.2025.101976 DOI: https://doi.org/10.1016/j.toxrep.2025.101976
3. J.C.T. Lai, L.Y. Liang, G. Lai-Hung Wong. Noninvasive tests for liver fibrosis in 2024: are there different scales for different diseases? Gastroenterology Report 12 (2023) goae096. https://doi.org/10.1093/GASTRO/GOAE024 DOI: https://doi.org/10.1093/gastro/goae024
4. W. Seo, W.I. Jeong. Hepatic non-parenchymal cells: Master regulators of alcoholic liver disease? World Journal of Gastroenterology 22 (2016) 1348-1356. https://doi.org/10.3748/wjg.v22.i4.1348 DOI: https://doi.org/10.3748/wjg.v22.i4.1348
5. J.M. Banales, R.C. Huebert, T. Karlsen, M. Strazzabosco, N.F. LaRusso, G.J. Gores. Cholangiocyte pathobiology. Nature Reviews Gastroenterology and Hepatology 16 (2019) 269-281. https://doi.org/10.1038/s41575-019-0125-y DOI: https://doi.org/10.1038/s41575-019-0125-y
6. J. Behmoaras, K. Mulder, F. Ginhoux, E. Petretto. The spatial and temporal activation of macrophages during fibrosis. Nature Reviews Immunology (2025). https://doi.org/10.1038/s41577-025-01186-x DOI: https://doi.org/10.1038/s41577-025-01186-x
7. Y. Wan, F. Meng, N. Wu, T. Zhou, J. Venter, H. Francis, L. Kennedy, T. Glaser, F. Bernuzzi, P. Invernizzi, S. Glaser, Q. Huang, G. Alpini. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells. Hepatology 66 (2017) 528-541. https://doi.org/10.1002/hep.29138 DOI: https://doi.org/10.1002/hep.29138
8. N.J. Hunt, P.A.G. McCourt, D.G.Le Couteur, V.C. Cogger. Novel targets for delaying aging: The importance of the liver and advances in drug delivery. Advanced Drug Delivery Reviews 135 (2018) 39-49. https://doi.org/10.1016/j.addr.2018.09.006 DOI: https://doi.org/10.1016/j.addr.2018.09.006
9. J. Gracia-Sancho, E. Caparrós, A. Fernández-Iglesias, R. Francés. Role of liver sinusoidal endothelial cells in liver diseases. Nature Reviews Gastroenterology and Hepatology 18 (2021) 411-431. https://doi.org/10.1038/s41575-020-00411-3 DOI: https://doi.org/10.1038/s41575-020-00411-3
10. Y. Wei, W. Bingyu, Y. Lei, Y. Xingxing. The antifibrotic role of natural killer cells in liver fibrosis. Experimental Biology and Medicine 247 (2022) 1235-1243. https://doi.org/10.1177/15353702221092672 DOI: https://doi.org/10.1177/15353702221092672
11. E. Slevin, L. Baiocchi, N. Wu, B. Ekser, K. Sato, E. Lin, L. Ceci, L. Chen, S.R. Lorenzo, W. Xu, K. Kyritsi, V. Meadows, T. Zhou, D. Kundu, Y. Han, L. Kennedy, S. Glaser, H. Francis, G. Alpini, F. Meng. Kupffer Cells: Inflammation Pathways and Cell-Cell Interactions in Alcohol-Associated Liver Disease. The American Journal of Pathology 190 (2020) 2185-2193. https://doi.org/10.1016/j.ajpath.2020.08.014 DOI: https://doi.org/10.1016/j.ajpath.2020.08.014
12. Y. Wan, W. Zhang, C. Huang, J. Jian, Y. Zhang, Q. Liu, P. Chen, X. Zhu. Ursolic acid alleviates Kupffer cells pyroptosis in liver fibrosis by the NOX2/NLRP3 inflammasome signaling pathway. International Immonopharmacology 113 (2022) 109321. https://doi.org/10.1016/j.intimp.2022.109321 DOI: https://doi.org/10.1016/j.intimp.2022.109321
13. Y. Zhou, D. Long, Y. Zhao, S. Li, Y. Liang, L. Wan, J. Zhang, F. Xue, L. Feng. Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation. Cell Death Disease 13 (2022) 689. https://doi.org/10.1038/s41419-022-05088-x DOI: https://doi.org/10.1038/s41419-022-05088-x
14. J. Plakkal Ayyappan, A. Paul, Y.H. Goo. Lipid droplet-associated proteins in atherosclerosis (Review). Molecular Medicine Reports 13 (2016) 4527-4534. https://doi.org/10.3892/mmr.2016.5099 DOI: https://doi.org/10.3892/mmr.2016.5099
15. T.F. Lee, K.M. Mak, O. Rackovsky, Y.L. Lin, A.J. Kwong, J.C. Loke, S.L. Friedman. Downregulation of hepatic stellate cell activation by retinol and palmitate mediated by adipose differentiation-related protein (ADRP). Journal of Cellular Physiology 223 (2010) 648-657. https://doi.org/10.1002/jcp.22063 DOI: https://doi.org/10.1002/jcp.22063
16. G. Mitropoulou, V. Kompoura, F. Saffioti, V.K. Mavroeidis. The Role of Matrix Metalloproteinases in Liver Function and Disease. Frontiers in Bioscience (Landmark Edition) 30 (2025) 27127. https://doi.org/10.31083/FBL27127 DOI: https://doi.org/10.31083/FBL27127
17. M. Sato, S. Suzuki, H. Senoo. Hepatic stellate cells: Unique characteristics in cell biology and phenotype. Cells Structure and Function 28 (2003) 105-112. https://doi.org/10.1247/csf.28.105 DOI: https://doi.org/10.1247/csf.28.105
18. Q. Tan, D. Xia, X. Ying. miR-29a in Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Fibrosis during Endometrial Repair of Intrauterine Adhesion. International Journal of Stem Cells 13 (2020) 414-423. https://doi.org/10.15283/ijsc20049 DOI: https://doi.org/10.15283/ijsc20049
19. R.F. Schwabe, D.A. Brenner. Hepatic stellate cells: balancing homeostasis, hepatoprotection and fibrogenesis in health and disease. Nature Reviews Gastroenterology Hepatology 22 (2025) 481-499. https://doi.org/10.1038/s41575-025-01068-6 DOI: https://doi.org/10.1038/s41575-025-01068-6
20. V.Q.H. Trinh, T.F. Lee, S. Lemoinne, K.C. Ray, M.D. Ybanez, T. Tsuchida, J.K. Carter, J. Agudo, B.D. Brown, K.M. Akat, S.L. Friedman, Y.A. Lee. Hepatic stellate cells maintain liver homeostasis through paracrine neurotrophin-3 signaling that induces hepatocyte proliferation. Science Signaling 16 (2023) eadf6696. https://doi.org/10.1126/scisignal.adf6696 DOI: https://doi.org/10.1126/scisignal.adf6696
21. D. Cassiman, C. Denef, V.J. Desmet, T. Roskams. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology (Baltimore, Md.) 33 (2001) 148-158. https://doi.org/10.1053/jhep.2001.20793 DOI: https://doi.org/10.1053/jhep.2001.20793
22. Patidar, N. Hirani, S. Bharti, M.S. Baig. Key regulators of hepatic stellate cell activation in alcohol liver Disease: A comprehensive review. International Immunopharmacology 141 (2024) 112938. https://doi.org/10.1016/j.intimp.2024.112938 DOI: https://doi.org/10.1016/j.intimp.2024.112938
23. Y. Geng, R.F. Schwabe. Hepatic stellate cell heterogeneity: Functional aspects and therapeutic implications. Hepatology (2025) 1386. https://doi.org/10.1097/HEP.0000000000001386 DOI: https://doi.org/10.1097/HEP.0000000000001386
24. M.J. McConnell, E. Kostallari, S.H. Ibrahim, Y. Iwakiri. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 78 (2023) 649. https://doi.org/10.1097/HEP.0000000000000207 DOI: https://doi.org/10.1097/HEP.0000000000000207
25. J. Poisson, S. Lemoinne, C. Boulanger, F. Durand, R. Moreau, D. Valla, & P.-E. Rautou. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. Journal of Hepatology 66 (2017) 212-227. https://doi.org/10.1016/j.jhep.2016.07.009 DOI: https://doi.org/10.1016/j.jhep.2016.07.009
26. Q. Dai, Q. Ain, N. Seth, H. Zhao, M. Rooney, A. Zipprich. Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Aging Cell 24 (2025) e14502. https://doi.org/10.1111/acel.14502 DOI: https://doi.org/10.1111/acel.14502
27. B. Gao, S. Radaeva. Natural killer and natural killer T cells in liver fibrosis. Biochimica et Biophysica Acta 1832 (2013) 1061-1069. https://doi.org/10.1016/j.bbadis.2012.09.008 DOI: https://doi.org/10.1016/j.bbadis.2012.09.008
28. P. Ramachandran, J.P. Iredale. Macrophages: Central regulators of hepatic fibrogenesis and fibrosis resolution. Journal of Hepatology 56 (2012) 1417-1419. https://doi.org/10.1016/j.jhep.2011.10.026 DOI: https://doi.org/10.1016/j.jhep.2011.10.026
29. A. Canbay, P. Taimr, N. Torok, H. Higuchi, S. Friedman, G.J. Gores. Apoptotic Body Engulfment by a Human Stellate Cell Line Is Profibrogenic. Laboratory Investigation 83 (2003) 655-663. https://doi.org/10.1097/01.LAB.0000069036.63405.5C DOI: https://doi.org/10.1097/01.LAB.0000069036.63405.5C
30. N. Nieto, S.L. Friedman, A.I. Cederbaum. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. The Journal of Biological 277 (2002) 9853-9864. https://doi.org/10.1074/jbc.M110506200 DOI: https://doi.org/10.1074/jbc.M110506200
31. H. Tsukamoto. Epigenetic mechanism of stellate cell trans-differentiation. Journal of Hepatology 46 (2007) 352-353. https://doi.org/10.1016/j.jhep.2006.11.002 DOI: https://doi.org/10.1016/j.jhep.2006.11.002
32. N. Tarrats, A. Moles, A. Morales, C. García-Ruiz, J.C. Fernández-Checa, M. Marí. Critical role of tumor necrosis factor receptor 1, but not 2, in hepatic stellate cell proliferation, extracellular matrix remodeling, and liver fibrogenesis. Hepatology (Baltimore, Md.) 54 (2011) 319-327. https://doi.org/10.1002/hep.24388 DOI: https://doi.org/10.1002/hep.24388
33. L. Chuliá-Peris, C. Carreres-Rey, M. Gabasa, J. Alcaraz, J. Carretero, J. Pereda. Matrix Metallo¬proteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. International Journal of Molecular Sciences 23 (2022) 6894. https://doi.org/10.3390/ijms23136894 DOI: https://doi.org/10.3390/ijms23136894
34. R. Urtasun, A. Lopategi, J. George, T.M. Leung, Y. Lu, X. Wang, X. Ge, M.I. Fiel, N. Nieto. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α(V)β(3) engagement and PI3K/pAkt/NFκB signaling. Hepatology (Baltimore, Md.) 55 (2012) 594-608. https://doi.org/10.1002/hep.24701 DOI: https://doi.org/10.1002/hep.24701
35. E. Seki, S.De Minicis, G.Y. Gwak, J. Kluwe, S. Inokuchi, C.A. Bursill, J.M. Llovet, D.A. Brenner, R.F. Schwabe. CCR1 and CCR5 promote hepatic fibrosis in mice. The Journal of Clinical Investigation 119 (2009) 1858-1870. https://doi.org/10.1172/jci37444 DOI: https://doi.org/10.1172/JCI37444
36. D.L. Rebolledo, K.E. Lipson, E. Brandan. Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biology Plus 11 (2021) 100059. https://doi.org/10.1016/j.mbplus.2021.100059 DOI: https://doi.org/10.1016/j.mbplus.2021.100059
37. J. Wang, E. S. H. Chu, H.-Y. Chen, K. Man, M. Y. Y. Go, X. R. Huang, H. Y. Lan, J. J. Y. Sung, J. Yu, microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget 6 (2015) 7325-7338. https://doi.org/10.18632/oncotarget.2621 DOI: https://doi.org/10.18632/oncotarget.2621
38. E. Novo, D. Povero, C. Busletta, C. Paternostro, L.V. Di Bonzo, S. Cannito, A. Compagnone, A. Bandino, F. Marra, S. Colombatto, E. David, M. Pinzani, M. Parola. The biphasic nature of hypoxia-induced directional migration of activated human hepatic stellate cells. Journal of Pathology 226 (2012) 588-597. https://doi.org/10.1002/path.3005 DOI: https://doi.org/10.1002/path.3005
39. J. Li, S.J. Qiu, W.M. She, F.P. Wang, H. Gao, L. Li, C.T. Tu, J.Y. Wang, X.Z. Shen, W. Jiang. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. Plos One 7(6) (2012) e39307. https://doi.org/10.1371/journal.pone.0039307 DOI: https://doi.org/10.1371/journal.pone.0039307
40. Y. Li, B. Huang, X. Jiang, W. Chen, J. Zhang, Y. Wei, Y. Chen, M. Lian, Z. Bian, Q. Miao, Y. Peng, J. Fang, Q. Wang, R. Tang, M.E. Gershwin, X. Ma. Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease Through Regulating Macrophage Polarization. Frontiers in Immunology 9 (2018) 1994. https://doi.org/10.3389/fimmu.2018.01994 DOI: https://doi.org/10.3389/fimmu.2018.01994
41. P. Hegde, E. Weiss, V. Paradis, J. Wan, M. Mabire, S. Sukriti, P.E. Rautou, M. Albuquerque, O. Picq, A.C. Gupta, G. Ferrere, H. Gilgenkrantz, B. Kiaf, A. Toubal, L. Beaudoin, P. Lettéron, R. Moreau, A. Lehuen, S. Lotersztajn. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nature Communications 9 (2018) 2146. https://doi.org/10.1038/s41467-018-04450-y DOI: https://doi.org/10.1038/s41467-018-04450-y
42. M. Liu, Y. Hu, Y. Yuan, Z. Tian, C. Zhang. γδT Cells Suppress Liver Fibrosis via Strong Cytolysis and Enhanced NK Cell-Mediated Cytotoxicity Against Hepatic Stellate Cells. Frontiers In Immunology 10 (2019) 477. https://doi.org/10.3389/fimmu.2019.00477 DOI: https://doi.org/10.3389/fimmu.2019.00477
43. W. Seo, H.S. Eun, S.Y. Kim, H.S. Yi, Y.S. Lee, S.H. Park, M.J. Jang, E. Jo, S.C. Kim, Y.M. Han, K.G. Park, W.I. Jeong. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology (Baltimore, Md.) 64 (2016) 616-631. https://doi.org/10.1002/hep.28644 DOI: https://doi.org/10.1002/hep.28644
44. H. Gilgenkrantz, R.A. Sayegh, S. Lotersztajn. Immunoregulation of Liver Fibrosis: New Opportunities for Antifibrotic Therapy. Annual Review of Pharmacology and Toxicology 65 (2025) 281-299. https://doi.org/10.1146/annurev-pharmtox-020524-012013 DOI: https://doi.org/10.1146/annurev-pharmtox-020524-012013
45. R.S. Wijaya, S.A. Read, S. Schibeci, M. Eslam, M.K. Azardaryany, K. El-Khobar, D. van der Poorten, R. Lin, L. Yuen, V. Lam, J. George, M.W. Douglas, G. Ahlenstiel. KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B. Journal of Hepatology 71 (2019) 252-264. https://doi.org/10.1016/j.jhep.2019.03.012 DOI: https://doi.org/10.1016/j.jhep.2019.03.012
46. A. Sugimoto, Y. Saito, G. Wang, Q. Sun, C. Yin, K.H. Lee, Y. Geng, P. Rajbhandari, C. Hernan-dez, M. Steffani, J. Qie, T. Savage, D.M. Goyal, K.C. Ray, T.V. Neelakantan, D. Yin, J. Melms, B.M. Lehrich, T.M. Yasaka, S. Liu, M. Oertel, T. Lan, A. Guillot, M. Peiseler, A. Filliol, H. Kan-zaki, N. Fujiwara, S. Ravi, B. Izar, M. Brosch, J. Hampe, H. Remotti, J. Argemi, Z. Sun, T.J. Kendall, Y. Hoshida, F. Tacke, J.A. Fallowfield, S.K. Blockley-Powell, R.A. Haeusler, J.B. Stein-man, U.B. Pajvani, S.P. Monga, R. Bataller, M. Masoodi, N. Arpaia, Y.A. Lee, B.R. Stockwell, H.G. Augustin, R.F. Schwabe. Hepatic stellate cells control liver zonation, size and functions via R-spondin 3. Nature 640 (2025) 752-761. https://doi.org/10.1038/s41586-025-08677-w DOI: https://doi.org/10.1038/s41586-025-08677-w
47. V. Merens, E. Knetemann, E. Gürbüz, V. De Smet, N. Messaoudi, H. Reynaert, S. Verhulst, L. A. van Grunsven. Hepatic stellate cell single cell atlas reveals a highly similar activation process across liver disease aetiologies. JHEP Reports 7 (2025) 101223. https://doi.org/10.1016/J.JHEPR.2024.101223 DOI: https://doi.org/10.1016/j.jhepr.2024.101223
48. X. Jiang, W. Zhao, B. Shen, Y. Han, K. Chen. CD47-mediated regulation of glucose and lipid metabolism: implications for the pathogenesis of MASLD. Frontiers In Endocrinology 16 (2025). https://doi.org/10.3389/fendo.2025.1535382 DOI: https://doi.org/10.3389/fendo.2025.1535382
49. D.W. Zhang, Y.X. Zhao, D. Wei, Y.L. Li, Y. Zhang, J. Wu, J. Xu, C. Chen, H. Tang, W. Zhang, L. Gong, Y. Han, Z.N. Chen, H. Bian. HAb18G/CD147 promotes activation of hepatic stellate cells and is a target for antibody therapy of liver fibrosis. Journal of Hepatology 57 (2012) 1283-1291. https://doi.org/10.1016/J.JHEP.2012.07.042 DOI: https://doi.org/10.1016/j.jhep.2012.07.042
50. L. Pirola. Elafibranor, a dual PPARα and PPARδ agonist, reduces alcohol-associated liver disease: Lessons from a mouse model. World Journal of Gastroenterology 31 (2025) 99312. https://doi.org/10.3748/wjg.v31.i4.99312 DOI: https://doi.org/10.3748/wjg.v31.i4.99312
51. G. Huang, M. Zhang, M. Wang, W. Xu, X. Duan, X. Han, J. Ren, Pioglitazone. a peroxisome proliferator activated receptor γ agonist, induces cell death and inhibits the proliferation of hypoxic HepG2 cells by promoting excessive production of reactive oxygen species. Oncology Letters 27 (2024) 160. https://doi.org/10.3892/ol.2024.14294 DOI: https://doi.org/10.3892/ol.2024.14294
52. S. Fiorucci, M. Biagioli, M. Baldoni, P. Ricci, V. Sepe, A. Zampella, E. Distrutti. The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opinion on Drug Discovery 16 (2021) 1193-1208. https://doi.org/10.1080/17460441.2021.1916465 DOI: https://doi.org/10.1080/17460441.2021.1916465
53. V. Lekakis, E. Cholongitas. The impact of emricasan on chronic liver diseases: current data. Clinical Journal of Gastroenterology 15 (2022) 271-285. https://doi.org/10.1007/s12328-021-01585-2 DOI: https://doi.org/10.1007/s12328-021-01585-2
54. S.A. Harrison, P. Bedossa, C.D. Guy, J.M. Schattenberg, R. Loomba, R. Taub, D. Labriola, S.E. Moussa, G.W. Neff, M.E. Rinella, Q.M. Anstee, M.F. Abdelmalek, Z. Younossi, S.J. Baum, S. Francque, M.R. Charlton, P.N. Newsome, N. Lanthier, I. Schiefke, A. Mangia, J.M. Pericàs, R. Patil, A.J. Sanyal, M. Noureddin, M.B. Bansal, N. Alkhouri, L. Castera, M. Rudraraju, V. Ratziu. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. New England Journal of Medicine 390 (2024) 497-509. https://doi.org/10.1056/NEJMOA2309000 DOI: https://doi.org/10.1056/NEJMoa2309000
55. X. Xu, Y. Guo, X. Luo, Z. Shen, Z. Sun, B. Shen, C. Zhou, J. Wang, J. Lu, Q. Zhang, Y. Ye, Y. Luo, Y. Qu, X. Cai, H. Dong, L. Lu. Hydronidone ameliorates liver fibrosis by inhibiting activation of hepatic stellate cells via Smad7-mediated degradation of TGFβRI. Liver International 43 (2023) 2523-2537. https://doi.org/10.1111/LIV.15715 DOI: https://doi.org/10.1111/liv.15715
56. N. Chalasani, M.F. Abdelmalek, G. Garcia-Tsao, R. Vuppalanchi, N. Alkhouri, M. Rinella, M. Noureddin, M. Pyko, M. Shiffman, A. Sanyal, A. Allgood, H. Shlevin, R. Horton, E. Zomer, W. Irish, Z. Goodman, S.A. Harrison, P.G. Traber, L. Balart, B. Borg, M. Charlton, H. Conjeevaram, M. Fuchs, R. Ghalib, P. Gholam, D. Halegoua-De Marzio, S. Harrison, C. Jue, N. Kemmer, K. Kowdley, M. Lai, E. Lawitz, R. Loomba, A. Paredes, D. Rockey, M. Rodriguez, R. Rubin, M. Ryan, A. Scanga, T. Sepe, B. Tetri, P. Thuluvath, D. Torres, J. Vierling, J. Wattacheril, A. Weiland, D. Zogg. Effects of Belapectin, an Inhibitor of Galectin-3, in Patients with Nonalcoholic Steatohepatitis with Cirrhosis and Portal Hypertension. Gastroenterology 158 (2020) 1334-1345.e5. https://doi.org/10.1053/J.GASTRO.2019.11.296 DOI: https://doi.org/10.1053/j.gastro.2019.11.296
57. S. Petta, G. Targher, S. Romeo, U.B. Pajvani, M.H. Zheng, A. Aghemo, L.V.C. Valenti. The first MASH drug therapy on the horizon: Current perspectives of resmetirom. Liver International 44 (2024) 1526-1536. https://doi.org/10.1111/LIV.15930 DOI: https://doi.org/10.1111/liv.15930
58. M. Kram. Galectin-3 inhibition as a potential therapeutic target in non-alcoholic steatohepatitis liver fibrosis. World Journal of Hepatology 15 (2023) 201-207. https://doi.org/10.4254/wjh.v15.i2.201 DOI: https://doi.org/10.4254/wjh.v15.i2.201
59. S.A. Nasir, A. Mangla, V. Taneja, T. Berger, D. Pandya, V. Gupta, J.K. Lim. Advances in Novel Drug Therapy for Metabolic Dysfunction-associated Steatohepatitis Cirrhosis. Journal of Translational Gastroenterology 3 (2025) 9-17. https://doi.org/10.14218/JTG.2024.00040 DOI: https://doi.org/10.14218/JTG.2024.00040
60. D. Ezhilarasan. Deciphering the molecular pathways of saroglitazar: A dual PPAR α/γ agonist for managing metabolic NAFLD. Metabolism 155 (2024) 155912. https://doi.org/10.1016/j.metabol.2024.155912 DOI: https://doi.org/10.1016/j.metabol.2024.155912
61. C.M. Hayes, G.M. Gallucci, J.L. Boyer, D.N. Assis, N.S. Ghonem. PPAR agonists for the treatment of cholestatic liver diseases: Over a decade of clinical progress. Hepatology Communications 9 (2024). https://doi.org/10.1097/HC9.0000000000000612 DOI: https://doi.org/10.1097/HC9.0000000000000612
62. S.J. Keam. Resmetirom: First Approval. Drugs 84 (2024) 729-735. https://doi.org/10.1007/s40265-024-02045-0 DOI: https://doi.org/10.1007/s40265-024-02045-0
63. J.M. Yabut, D.J. Drucker. Glucagon-like Peptide-1 Receptor-based Therapeutics for Metabolic Liver Disease. Endocrine Reviews 44 (2023) 14-32. https://doi.org/10.1210/endrev/bnac018 DOI: https://doi.org/10.1210/endrev/bnac018
64. A.J. Sanyal, P.N. Newsome, I. Kliers, L.H. Østergaard, M.T. Long, M.S. Kjær, A.M.G. Cali, E. Bugianesi, M.E. Rinella, M. Roden, V. Ratziu. Phase 3 Trial of Semaglutide in Metabolic Dysfunction-Associated Steatohepatitis. New England Journal of Medicine 392 (2025) 2089-2099. https://doi.org/10.1056/NEJMOA2413258 DOI: https://doi.org/10.1056/NEJMoa2413258
65. A. Azizsoltani, B. Niknam, M. Taghizadeh-Teymorloei, E. Ghoodjani, H. Dianat-Moghadam, E. Alizadeh. Therapeutic implications of obeticholic acid, a farnesoid X receptor agonist, in the treatment of liver fibrosis. Biomedicine Pharmacotherapy 189 (2025) 11829. https://doi.org/10.1016/j.biopha.2025.118249 DOI: https://doi.org/10.1016/j.biopha.2025.118249
66. V.J. Thannickal, K. Jandeleit-Dahm, C. Szyndralewiez, N.J. Török. Pre-clinical evidence of a dual NADPH oxidase 1/4 inhibitor (setanaxib) in liver, kidney and lung fibrosis. Journal of Cellular and Molecular Medicine 27 (2023) 471-481. https://doi.org/10.1111/jcmm.17649 DOI: https://doi.org/10.1111/jcmm.17649
67. S.M. El Haggar, S.K. Hegazy, S.M. Abd-Elsalam, M.M. Bahaa. Pentoxifylline, a nonselective phosphodiesterase inhibitor, in adjunctive therapy in patients with irritable bowel syndrome treated with mebeverine. Biomedicine Pharmacotherapy 145 (2022) 112399. https://doi.org/10.1016/j.biopha.2021.112399 DOI: https://doi.org/10.1016/j.biopha.2021.112399
68. X. Cai, X. Liu, W. Xie, A. Ma, Y. Tan, J. Shang, J. Zhang, C. Chen, Y. Yu, Y. Qu, L. Zhang, Y. Luo, P. Yin, J. Cheng, L. Lu. Hydronidone for the Treatment of Liver Fibrosis Related to Chronic Hepatitis B: A Phase 2 Randomized Controlled Trial. Clinical Gastroenterology and Hepatology 21 (2023) 1893-1901.e7. https://doi.org/10.1016/j.cgh.2022.05.056 DOI: https://doi.org/10.1016/j.cgh.2022.05.056
69. J. Zhang, Q. Wang, N. Zhou, J. Liu, L. Tao, Z. Peng, G. Hu, H. Wang, L. Fu, S. Peng. Fluorofenidone attenuates choline-deficient, l-amino acid-defined, high-fat diet-induced metabolic dysfunction-associated steatohepatitis in mice. Scientific Reports 15 (2025) 9863. https://doi.org/10.1038/s41598-025-94401-7 DOI: https://doi.org/10.1038/s41598-025-94401-7
70. Z. Ma, K. Jin, M. Yue, X. Chen, J. Chen. Research Progress on the GIP/GLP-1 Receptor Coagonist Tirzepatide, a Rising Star in Type 2 Diabetes. Journal of Diabetes Research 2023 (2023) 5891532. https://doi.org/10.1155/2023/5891532 DOI: https://doi.org/10.1155/2023/5891532
71. N. Alkhouri, E. Lawitz, M. Noureddin, R. DeFronzo, G.I. Shulman. GS-0976 (Firsocostat): an investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment of non-alcoholic steatohepatitis (NASH). Expert Opinion on Investigational Drugs 29 (2020) 135-141. https://doi.org/10.1080/13543784.2020.1668374 DOI: https://doi.org/10.1080/13543784.2020.1668374
72. R. Loomba, A.J. Sanyal, A. Nakajima, B.A. Neuschwander-Tetri, Z.D. Goodman, S.A. Harrison, E.J. Lawitz, N. Gunn, K. Imajo, N. Ravendhran, T. Akahane, B. Boone, M. Yamaguchi, A. Chatterjee, G.S. Tirucherai, D.E. Shevell, S. Du, E.D. Charles, M.F. Abdelmalek. Pegbelfermin in Patients With Nonalcoholic Steatohepatitis and Stage 3 Fibrosis (FALCON 1): A Randomized Phase 2b Study. Clinical Gastroenterology and Hepatology 22 (2024) 102-112.e9. https://doi.org/10.1016/j.cgh.2023.04.011 DOI: https://doi.org/10.1016/j.cgh.2023.04.011
73. M.E. Rinella, H.D. Lieu, K.V. Kowdley, Z.D. Goodman, N. Alkhouri, E. Lawitz, V. Ratziu, M.F. Abdelmalek, V.W.S. Wong, Z.H. Younes, A.M. Sheikh, D. Brannan, B. Freilich, F. Membreno, M. Sinclair, L. Melchor-Khan, A.J. Sanyal, L. Ling, S.A. Harrison. A randomized, double-blind, placebo-controlled trial of aldafermin in patients with NASH and compensated cirrhosis. Hepatology 79 (2024) 674-689. https://doi.org/10.1097/HEP.0000000000000607 DOI: https://doi.org/10.1097/HEP.0000000000000607
74. V. Ratziu, Y. Yilmaz, D. Lazas, S.L. Friedman, C. Lackner, C. Behling, O.W. Cummings, L. Chen, M. Petitjean, Y. Gilgun-Sherki, T. Gorfine, S. Kadosh, E. Eyal, A.J. Sanyal. Aramchol improves hepatic fibrosis in metabolic dysfunction-associated steatohepatitis: Results of multimodality assessment using both conventional and digital pathology. Hepatology 81 (2025) 932. https://doi.org/10.1097/HEP.0000000000000980 DOI: https://doi.org/10.1097/HEP.0000000000000980
75. F. Ciftci, A.C. Özarslan, İ.C. Kantarci, A. Yelkenci, O. Tavukcuoglu, M. Ghorbanpour. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 17 (2025) 121. https://doi.org/10.3390/pharmaceutics17010121 DOI: https://doi.org/10.3390/pharmaceutics17010121
76. X. Han, Z.Y. Cui, J. Song, H.Q. Piao, L.H. Lian, L.S. Hou, G. Wang, S. Zheng, X.X. Dong, J.X. Nan, Y.L. Wu. Acanthoic acid modulates lipogenesis in nonalcoholic fatty liver disease via FXR/LXRs-dependent manner. Chemico-Biological Interactions 311 (2019) 108794. https://doi.org/10.1016/j.cbi.2019.108794 DOI: https://doi.org/10.1016/j.cbi.2019.108794
77. A. Azizsoltani, B. Hatami, M.R. Zali, V. Mahdavi, K. Baghaei, E. Alizadeh. Obeticholic acid-loaded exosomes attenuate liver fibrosis through dual targeting of the FXR signaling pathway and ECM remodeling. Biomedicine Pharmacotherapy 168 (2023) 115777. https://doi.org/10.1016/j.biopha.2023.115777 DOI: https://doi.org/10.1016/j.biopha.2023.115777
78. S. Girisa, B.S. Aswani, M.K. Manickasamy, M. Hegde, M.S. Alqahtani, M. Abbas, G. Sethi, A.B. Kunnumakkara. Restoring FXR expression as a novel treatment strategy in liver cancer and other liver disorders. Expert Opinion on Therapeutic Targets 29 (2025) 193-221. https://doi.org/10.1080/14728222.2025.2487465 DOI: https://doi.org/10.1080/14728222.2025.2487465
79. N.S. El-Mezayen, W.F. El-Hadidy, W.M. El-Refaie, T.I. Shalaby, M.M. Khattab, A.S. El-Khatib. Oral vitamin-A-coupled valsartan nanomedicine: High hepatic stellate cell receptors accessibility and prolonged enterohepatic residence. Journal of Controlled Release 283 (2018) 32-44. https://doi.org/10.1016/j.jconrel.2018.05.021 DOI: https://doi.org/10.1016/j.jconrel.2018.05.021
80. Y.W. Zhang, L.S. Hou, J.H. Xing, T.R. Zhang, S.Y. Zhou, B.L. Zhang. Two-Membrane Hybrid Nanobiomimetic Delivery System for Targeted Autophagy Inhibition of Activated Hepatic Stellate Cells To Synergistically Treat Liver Fibrosis. ACS Applied Materials Interfaces 15 (2023) 50863-50877. https://doi.org/10.1021/acsami.3c11046 DOI: https://doi.org/10.1021/acsami.3c11046
81. S. Tan, H. Liu, B. Ke, J. Jiang, B. Wu. The peripheral CB receptor antagonist JD5037 attenuates liver fibrosis via a CB receptor/β-arrestin1/Akt pathway. British Journal of Pharmacology 177 (2020) 2830-2847. https://doi.org/10.1111/bph.15010 DOI: https://doi.org/10.1111/bph.15010
82. A.M. Ali, O.S. El-Tawil, A.K. Al-Mokaddem, S.S. Abd El-Rahman. Promoted inhibition of TLR4/miR-155/ NFkB p65 signaling by cannabinoid receptor 2 agonist (AM1241), aborts inflammation and progress of hepatic fibrosis induced by thioacetamide. Chemo-Biological Interactions 336 (2021) 109398. https://doi.org/10.1016/j.cbi.2021.109398 DOI: https://doi.org/10.1016/j.cbi.2021.109398
83. B. Li, C. Yan, J. Wu, K. Stephane, X. Dong, Y.Z. Zhang, Y. Zhang, Q. Yu, K.Y. Zheng. Clonorchis sinensis ESPs enhance the activation of hepatic stellate cells by a cross-talk of TLR4 and TGF-β/Smads signaling pathway. Acta Tropica 205 (2020) 105307. https://doi.org/10.1016/j.actatropica.2019.105307 DOI: https://doi.org/10.1016/j.actatropica.2019.105307
84. B.L. Sun, X. Sun, C.L. Kempf, J.H. Song, N.G. Casanova, S.M. Camp, V. Reyes Hernon, M. Fallon, C. Bime, D.R. Martin, C. Travelli, D.D. Zhang, J.G.N. Garcia. Involvement of eNAMPT/TLR4 inflammatory signaling in progression of non-alcoholic fatty liver disease, steatohepatitis, and fibrosis. The FASEB Journal 37 (2023) e22825. https://doi.org/10.1096/fj.202201972RR DOI: https://doi.org/10.1096/fj.202201972RR
85. M. Zhang, E. Barroso, L. Peña, P. Rada, Á.M. Valverde, W. Wahli, X. Palomer, M. Vázquez-Carrera. PPARβ/δ attenuates hepatic fibrosis by reducing SMAD3 phosphorylation and p300 levels via AMPK in hepatic stellate cells. Biomedicine and Pharmacotherapy 179 (2024) 117303. https://doi.org/10.1016/j.biopha.2024.117303 DOI: https://doi.org/10.1016/j.biopha.2024.117303
86. A.N. Moon, F. Briand, N. Breyner, D.K. Song, M.R. Madsen, H. Kim, K. Choi, Y. Lee, W. Namkung. Improvement of NASH and liver fibrosis through modulation of the gut-liver axis by a novel intestinal FXR agonist. Biomedicine Pharmacotherapy 173 (2024) 116331. https://doi.org/10.1016/j.biopha.2024.116331 DOI: https://doi.org/10.1016/j.biopha.2024.116331
87. H.M. Liu, T.Y. Lee, J.F. Liao. GW4064 attenuates lipopolysaccharide-induced hepatic inflammation and apoptosis through inhibition of the Toll-like receptor 4-mediated p38 mitogen-activated protein kinase signaling pathway in mice. International Journal of Molecular Medicine 41 (2018) 1455-1462. https://doi.org/10.3892/ijmm.2018.3366 DOI: https://doi.org/10.3892/ijmm.2018.3366
88. L.G. Di Pasqua, M. Cagna, G. Palladini, A.C. Croce, M. Cadamuro, L. Fabris, S. Perlini, L. Adorini, A. Ferrigno, M. Vairetti. FXR agonists INT-787 and OCA increase RECK and inhibit liver steatosis and inflammation in diet-induced ob/ob mouse model of NASH. Liver International 44 (2024) 214-227. https://doi.org/10.1111/liv.15767 DOI: https://doi.org/10.1111/liv.15767
89. B. Anfuso, C. Tiribelli, L. Adorini, N. Rosso. Obeticholic acid and INT-767 modulate collagen deposition in a NASH in vitro model. Scientific Reports 10 (2020) 1699. https://doi.org/10.1038/s41598-020-58562-x DOI: https://doi.org/10.1038/s41598-020-58562-x
90. S. Feng, X. Xie, J. Li, X. Xu, C. Chen, G. Zou, G. Lin, T. Huang, R. Hu, T. Ran, L. Han, Q. Zhang, Y. Li, X. Zhao. Bile acids induce liver fibrosis through the NLRP3 inflammasome pathway and the mechanism of FXR inhibition of NLRP3 activation. Hepatology International 18 (2024) 1040-1052. https://doi.org/10.1007/s12072-023-10610-0 DOI: https://doi.org/10.1007/s12072-023-10610-0
91. Y. Jiang, L. Hou, J. Dou, M. Xuan, Z. Cui, L. Lian, J. Nan, Y. Wu. Sesamol as a potential candidate for the treatment of hepatic fibrosis, based on its regulation of FXR/LXR axis-mediated inhibition of autophagy through crosstalk between hepatic cells and macrophage. Phytomedicine 123 (2024) 155145. https://doi.org/10.1016/j.phymed.2023.155145 DOI: https://doi.org/10.1016/j.phymed.2023.155145
92. M. Sengupta, K. Griffett, C.A. Flaveny, T.P. Burris. Inhibition of Hepatotoxicity by a LXR Inverse Agonist in a Model of Alcoholic Liver Disease. ACS Pharmacology Translational Science 1 (2018) 50-60. https://doi.org/10.1021/acsptsci.8b00003 DOI: https://doi.org/10.1021/acsptsci.8b00003
93. K. Griffett, T.P. Burris. Promiscuous activity of the LXR antagonist GSK2033 in a mouse model of fatty liver disease. Biochemical and Biophysical Research Communications 479 (2016) 424-428. https://doi.org/10.1016/j.bbrc.2016.09.036 DOI: https://doi.org/10.1016/j.bbrc.2016.09.036
94. F. Zhang, S. Lu, J. He, H. Jin, F. Wang, L. Wu, J. Shao, A. Chen, S. Zheng. Ligand Activation of PPARγ by Ligustrazine Suppresses Pericyte Functions of Hepatic Stellate Cells via SMRT-Mediated Transrepression of HIF-1α. Theranostics 8 (2018) 610-626. https://doi.org/10.7150/thno.22237 DOI: https://doi.org/10.7150/thno.22237
95. B.de Souza Basso, G.V. Haute, M. Ortega-Ribera, C. Luft, G.L. Antunes, M.S. Bastos, L.P. Carlessi, V.G. Levorse, E. Cassel, M.V. Fagundes Donadio, E.R. Santarém, J. Gracia-Sancho, J. Rodrigues de Oliveira. Methoxyeugenol deactivates hepatic stellate cells and attenuates liver fibrosis and inflammation through a PPAR-ɣ and NF-kB mechanism. Journal of Ethnopharmacology 280 (2021) 114433. https://doi.org/10.1016/j.jep.2021.114433 DOI: https://doi.org/10.1016/j.jep.2021.114433
96. L. Chen, L. Li, J. Chen, L. Li, Z. Zheng, J. Ren, Y. Qiu. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells. Oncotarget 6 (2015) 42530-42540. https://doi.org/10.18632/oncotarget.6466 DOI: https://doi.org/10.18632/oncotarget.6466
97. A. Sandoval-Rodriguez, H.C. Monroy-Ramirez, A. Meza-Rios, J. Garcia-Bañuelos, J. Vera-Cruz, J. Gutiérrez-Cuevas, J. Silva-Gomez, B. Staels, J. Dominguez-Rosales, M. Galicia-Moreno, M. Vazquez-Del Mercado, J. Navarro-Partida, A. Santos-Garcia, J. Armendariz-Borunda. Pirfenidone Is an Agonistic Ligand for PPARα and Improves NASH by Activation of SIRT1/LKB1/pAMPK. Hepatology Communications 4 (2020) 434-449. https://doi.org/10.1002/hep4.1474 DOI: https://doi.org/10.1002/hep4.1474
98. Z. Zhou, L. Deng, L. Hu, Q. Ren, Z. Cai, B. Wang, Z. Li, L. Zhang. Hepatoprotective effects of ZLY16, a dual peroxisome proliferator-activated receptor α/δ agonist, in rodent model of nonalcoholic steatohepatitis. European Journal of Pharmacology 882 (2020) 173300. https://doi.org/10.1016/j.ejphar.2020.173300 DOI: https://doi.org/10.1016/j.ejphar.2020.173300
99. A. Honda, S. Kamata, C. Satta, Y. Machida, K. Uchii, K. Terasawa, A. Nemoto, T. Oyama, I. Ishii. Structural basis for anti-non-alcoholic fatty liver disease and diabetic dyslipidemia drug saroglitazar as a PPAR α/γ dual agonist. Biological and Pharmaceutical Bulletin 44 (2021) 1210. https://doi.org/10.1248/bpb.b21-00232 DOI: https://doi.org/10.1248/bpb.b21-00232
100. M. Kumazoe, E. Miyamoto, C. Oka, M. Kondo, R. Yoshitomi, H. Onda, Y. Shimada, Y. Fujimura, H. Tachibana. miR-12135 ameliorates liver fibrosis accompanied with the downregulation of integrin subunit alpha 11. IsciencE 27 (2024) 108730. https://doi.org/10.1016/j.isci.2023.108730 DOI: https://doi.org/10.1016/j.isci.2023.108730
101. D. Reichert, L. Adolph, J.P. Köhler, T. Buschmann, T. Luedde, D. Häussinger, C. Kordes. Improved recovery from liver fibrosis by crenolanib. Cells 10 (2021) 804. https://doi.org/10.3390/cells10040804 DOI: https://doi.org/10.3390/cells10040804
102. F. Liu, S. Li, P. Chen, Y. Gu, S. Wang, L. Wang, C. Chen, R. Wang, Y. Yuan. Salvianolic acid B inhibits hepatic stellate cell activation and liver fibrosis by targeting PDGFRβ. International Immunopharmacology 122 (2023) 110550. https://doi.org/10.1016/j.intimp.2023.110550 DOI: https://doi.org/10.1016/j.intimp.2023.110550
103. S. Mekala, G. Sukumar, S. Chawla, R. Geesala, J. Prashanth, B.J.M. Reddy, P. Mainkar, A. Das. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chemistry Biodiversity 21 (2024) e202301429. https://doi.org/10.1002/cbdv.202301429 DOI: https://doi.org/10.1002/cbdv.202301429
104. R. Wang, F. Liu, P. Chen, S. Li, Y. Gu, L. Wang, C. Chen, Y. Yuan. Gomisin D alleviates liver fibrosis through targeting PDGFRβ in hepatic stellate cells. International Journal of Biological Macromolecules 235 (2023) 123639. https://doi.org/10.1016/j.ijbiomac.2023.123639 DOI: https://doi.org/10.1016/j.ijbiomac.2023.123639
105. Z. Chen, H. Liu, A. Jain, L. Zhang, C. Liu, K. Cheng. Discovery of aptamer ligands for hepatic stellate cells using SELEX. Theranostics 7 (2017) 2982-2995. https://doi.org/10.7150/thno.19374 DOI: https://doi.org/10.7150/thno.19374
106. A. Mohamed, O. El-Tawil, S. El-Rahman. Inhibited TLR-4/NF- κB Pathway Mediated by Cannabinoid Receptor 2 Activation Curbs Ongoing Liver Fibrosis in Bile Duct Ligated Rats. Advances in Animal and Veterinary Sciences 9 (2020) 253-264. https://doi.org/10.17582/journal.aavs/2021/9.2.253.264 DOI: https://doi.org/10.17582/journal.aavs/2021/9.2.253.264
107. N. Aljobaily, K. Krutsinger, M.J. Viereckl, R. Joly, B. Menlove, B. Cone, A. Suppes, Y. Han. Low-Dose Administration of Cannabigerol Attenuates Inflammation and Fibrosis Associated with Methionine/Choline Deficient Diet-Induced NASH Model via Modulation of Cannabinoid Receptor. Nutrients 15(1) (2023) 178. https://doi.org/10.3390/nu15010178 DOI: https://doi.org/10.3390/nu15010178
108. V.De Nunzio, L. Carrieri, M.P. Scavo, T. Lippolis, M. Cofano, G.R. Caponio, V. Tutino, F. Rizzi, N. Depalo, A.R. Osella, M. Notarnicola. Plasma-Derived Exosomes from NAFLD Patients Modulate the Cannabinoid Receptors’ Expression in Cultured HepaRG Cells. International Journal of Molecular Sciences 24(2) (2023) 1739. https://doi.org/10.3390/ijms24021739 DOI: https://doi.org/10.3390/ijms24021739
109. L.S. Hou, Z.Y. Cui, P. Sun, H.Q. Piao, X. Han, J. Song, G. Wang, S. Zheng, X.X. Dong, L. Gao, Y. Zhu, L.H. Lian, J.X. Nan, Y.L. Wu. Rutin mitigates hepatic fibrogenesis and inflammation through targeting TLR4 and P2X7 receptor signaling pathway in vitro and in vivo. Journal of Functional Foods 64 (2020) 103700. https://doi.org/10.1016/j.jff.2019.103700 DOI: https://doi.org/10.1016/j.jff.2019.103700
110. B.X. Tang, Y. Zhang, D.D. Sun, Q.Y. Liu, C. Li, P.P. Wang, L.X. Gao, X.M. Zhang, J. Li, W.L. Zhu, Y. Zang. Luteolin-7-diglucuronide, a novel PTP1B inhibitor, ameliorates hepatic stellate cell activation and liver fibrosis in mice. Acta Pharmacologica Sinica 46 (2024) 122-133. https://doi.org/10.1038/S41401-024-01351-3 DOI: https://doi.org/10.1038/s41401-024-01351-3
111. N.M. El-Sayed, E.T. Menze, M.G. Tadros, D.M.F. Hanna. Mangiferin mitigates methotrexate-induced liver injury and suppresses hepatic stellate cells activation in rats: Imperative role of Nrf2/NF-κB/NLRP3 signaling axis. Journal of Ethnopharmacology 340 (2025) 119296. https://doi.org/10.1016/J.JEP.2024.119296 DOI: https://doi.org/10.1016/j.jep.2024.119296
112. L. Gan, Q. Jiang, D. Huang, X. Wu, X. Zhu, L. Wang, W. Xie, J. Huang, R. Fan, Y. Jing, G. Tang, X. D. Li, J. Guo, S. Yin. A natural small molecule alleviates liver fibrosis by targeting apolipoprotein L2. Nature Chemical Biology 21 (2024) 80-90. https://doi.org/10.1038/s41589-024-01704-3 DOI: https://doi.org/10.1038/s41589-024-01704-3
113. L. Huang, Y. Chen, X. Fan, X. Zhang, X. Wang, L. Liu, T. Liu, P. Wang, A. Xu, X. Zhao, M. Cong. Fluorofenidone mitigates liver fibrosis through GSK-3β modulation and hepatocyte protection in a 3D tissue-engineered model. International Immunopharmacology 149 (2025) 114209. https://doi.org/10.1016/J.INTIMP.2025.114209 DOI: https://doi.org/10.1016/j.intimp.2025.114209
114. M. Lv, S. Chen, M. Shan, Y. Si, C. Huang, J. Chen, L. Gong. Arctigenin induces activated HSCs quiescence via AMPK-PPARγ pathway to ameliorate liver fibrosis in mice. European Journal of Pharmacology 974 (2024) 176629. https://doi.org/10.1016/J.EJPHAR.2024.176629 DOI: https://doi.org/10.1016/j.ejphar.2024.176629
115. M.ten Hove, A. Smyris, R. Booijink, L. Wachsmuth, U. Hansen, L. Alic, C. Faber, C. Hӧltke, R. Bansal. Engineered SPIONs functionalized with endothelin a receptor antagonist ameliorate liver fibrosis by inhibiting hepatic stellate cell activation. Bioactive Materials 39 (2024) 406-426. https://doi.org/10.1016/j.bioactmat.2024.05.034 DOI: https://doi.org/10.1016/j.bioactmat.2024.05.034
116. M. Yuan, Z. Yin, Z. Wang, Z. Xiong, P. Chen, L. Yao, P. Liu, M. Sun, K. Shu, L. Li, Y. Jiang. Modifi¬cation of MSCs with aHSCs-targeting peptide pPB for enhanced therapeutic efficacy in liver fibrosis. Biomaterials 321 (2025) 123295. https://doi.org/10.1016/J.BIOMATERIALS.2025.123295 DOI: https://doi.org/10.1016/j.biomaterials.2025.123295
117. P. Yang, W. Liu, Z. Chen, D. Duan, J. Xu, X. An, A. Xie, Z. Rao, Y. Xia, R. Zhang, P. Ning, C. Qiao, X. Zhang, Z. Wang. Sono-mediated glutamine metabolic nanoplatform against liver fibrosis via breaking the vicious self-injury of activated hepatic stellate cells. Nano Today 61 (2025) 102641. https://doi.org/10.1016/J.NANTOD.2025.102641 DOI: https://doi.org/10.1016/j.nantod.2025.102641
118. Y. Xu, Y. Fan, Z. Zhao, W. Hu, Y. Qian, Y. Hu. Circularized Supramolecular Spherical Nucleic Acids Alleviates Liver Fibrosis through Blocking Upstream Activation and Reversing Activation State of Hepatic Stellate Cells. ACS Nano 19(16) (2025) 15444-15456. https://doi.org/10.1021/ACSNANO.4C15562 DOI: https://doi.org/10.1021/acsnano.4c15562
119. J. Huang, H. Huang, Y. Wang, B. Xu, M. Lin, S. Han, Y. Yuan, Y. Wang, X. Shuai. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials 299 (2023) 122134. https://doi.org/10.1016/j.biomaterials.2023.122134 DOI: https://doi.org/10.1016/j.biomaterials.2023.122134
120. M. Azzam, S. El Safy, S.A. Abdelgelil, R. Weiskirchen, A. Asimakopoulou, F. de Lorenzi, T. Lammers, S. Mansour, S. Tammam. Targeting Activated Hepatic Stellate Cells Using Collagen-Binding Chitosan Nanoparticles for siRNA Delivery to Fibrotic Livers. Pharmaceutics 12(6) (2020) 590. https://doi.org/10.3390/pharmaceutics12060590 DOI: https://doi.org/10.3390/pharmaceutics12060590
121. M.A. Younis, Y. Sato, Y.H.A. Elewa, H. Harashima. Reprogramming activated hepatic stellate cells by siRNA-loaded nanocarriers reverses liver fibrosis in mice. Journal of Controlled Release 361 (2023) 592-603. https://doi.org/10.1016/j.jconrel.2023.08.021 DOI: https://doi.org/10.1016/j.jconrel.2023.08.021
122. M.X. Liu, L. Xu, Y.T. Cai, R.J. Wang, Y.Y. Gu, Y.C. Liu, Y.J. Zou, Y.M. Zhao, J. Chen, X.L. Zhang. Carbon Nitride-Based siRNA Vectors with Self-Produced O(2) Effects for Targeting Combination Therapy of Liver Fibrosis via HIF-1α-Mediated TGF-β1/Smad Pathway. Advanced Healthcare Materials 12 (2023) e2301485. https://doi.org/10.1002/adhm.202301485 DOI: https://doi.org/10.1002/adhm.202301485
123. L. Wang, J. Zhou, J. Wang, X. Wang, H. Dong, L. Zhao, J. Wu, J. Peng. Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis. Advanced Healthcare Materials 13(12) (2024) 2303710. https://doi.org/10.1002/adhm.202303710 DOI: https://doi.org/10.1002/adhm.202303710
124. Y.N. Chen, S.L. Hsu, M.Y. Liao, Y.T. Liu, C.H. Lai, J.F. Chen, M.H.T. Nguyen, Y.H.Su, S.T. Chen, L.C. Wu. Ameliorative effect of curcumin-encapsulated hyaluronic acid-PLA nanoparticles on thioacetamide-induced murine hepatic fibrosis. International Journal of Environmental Research and Public Health 14(1) (2017) 11. https://doi.org/10.3390/ijerph14010011 DOI: https://doi.org/10.3390/ijerph14010011
125. Y. Liu, S. Chen, H. Huang, A.C. Midgley, Z. Han, Z.C. Han, Q. Li, Z. Li. Ligand-Tethered Extracellular Vesicles Mediated RNA Therapy for Liver Fibrosis. Advanced Healthcare Materials 14 (2025) 2403068. https://doi.org/10.1002/ADHM.202403068 DOI: https://doi.org/10.1002/adhm.202403068
126. W. Li, C. Zhou, Y. Fu, T. Chen, X. Liu, Z. Zhang, T. Gong. Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharmaceutica Sinica B 10 (2020) 693-710. https://doi.org/10.1016/j.apsb.2019.07.003 DOI: https://doi.org/10.1016/j.apsb.2019.07.003
127. X. Wang, W. Zhang, S. Zeng, L. Wang, B. Wang. Collagenase Type I and Probucol-Loaded Nanoparticles Penetrate the Extracellular Matrix to Target Hepatic Stellate Cells for Hepatic Fibrosis Therapy. Acta Biomaterialia 175 (2024) 262-278. https://doi.org/10.1016/j.actbio.2023.12.027 DOI: https://doi.org/10.1016/j.actbio.2023.12.027
128. Y. Xiong, B. Wu, X. Guo, D. Shi, H. Xia, H. Xu, X. Liu. Galangin delivered by retinoic acid-modified nanoparticles targeted hepatic stellate cells for the treatment of hepatic fibrosis. RSC Advances 13 (2023) 10987-11001. https://doi.org/10.1039/d2ra07561j DOI: https://doi.org/10.1039/D2RA07561J
129. Y. Li, S. Pu, Q. Liu, R. Li, J. Zhang, T. Wu, L. Chen, H. Li, X. Yang, M. Zou, J. Xiao, W. Xie, J. He. An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis. Journal of Controlled Release 303 (2019) 77-90. https://doi.org/10.1016/j.jconrel.2019.04.022 DOI: https://doi.org/10.1016/j.jconrel.2019.04.022
130. R. Li, J. Zhang, Q. Liu, Q. Tang, Q. Jia, Y. Xiong, J. He, Y. Li. CREKA-modified liposomes target activated hepatic stellate cells to alleviate liver fibrosis by inhibiting collagen synthesis and angiogenesis. Acta Biomaterialia 168 (2023) 484-496. https://doi.org/10.1016/j.actbio.2023.06.032 DOI: https://doi.org/10.1016/j.actbio.2023.06.032
131. Y. Zhang, Y. Li, T. Mu, N. Tong, P. Cheng. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. Journal of Cellular and Molecular Medicine 25 (2021) 1299-1313. https://doi.org/10.1111/jcmm.16209 DOI: https://doi.org/10.1111/jcmm.16209
132. N.S. El-Mezayen, W.F. El-Hadidy, W.M. El-Refaie, Th.I. Shalaby, M.M. Khattab, A.S. El-Khatib. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: A novel strategy with potent efficacy in experimental liver fibrosis. Journal of Controlled Release 266 (2017) 226-237. https://doi.org/10.1016/j.jconrel.2017.09.035 DOI: https://doi.org/10.1016/j.jconrel.2017.09.035
133. Y. Hao, K. Song, X. Tan, L. Ren, X. Guo, C. Zhou, H. Li, J. Wen, Y. Meng, M. Lin, Y. Zhang, H. Huang, L. Wang, W. Zheng. Reactive Oxygen Species-Responsive Polypeptide Drug Delivery System Targeted Activated Hepatic Stellate Cells to Ameliorate Liver Fibrosis. ACS Nano 16 (2022) 20739-20757. https://doi.org/10.1021/acsnano.2c07796 DOI: https://doi.org/10.1021/acsnano.2c07796
134. M.A. Morsy, A.B. Nair. Prevention of rat liver fibrosis by selective targeting of hepatic stellate cells using hesperidin carriers. International Journal of Pharmaceutics 552 (2018) 241-250. https://doi.org/10.1016/j.ijpharm.2018.10.003 DOI: https://doi.org/10.1016/j.ijpharm.2018.10.003
135. J. Wu, C. Qi, H. Wang, Q. Wang, J. Sun, J. Dong, G. Yu, Z. Gao, B. Zhang, G. Tian. Curcumin and berberine co-loaded liposomes for anti-hepatocellular carcinoma therapy by blocking the cross-talk between hepatic stellate cells and tumor cells. Frontiers in Pharmacology 13 (2022) 961788. https://doi.org/10.3389/fphar.2022.961788 DOI: https://doi.org/10.3389/fphar.2022.961788
136. R. Omar, J. Yang, S. Alrushaid, F.J. Burczynski, G.Y. Minuk, Y. Gong. Inhibition of BMP4 and Alpha Smooth Muscle Actin Expression in LX-2 Hepatic Stellate Cells by BMP4-siRNA Lipid Based Nanoparticle. Journal of Pharmacy and Pharmaceutical Sciences 21 (2019) 119-134. https://doi.org/10.18433/jpps29584 DOI: https://doi.org/10.18433/jpps29584
137. A. Ullah, K. Wang, P. Wu, D. Oupicky, M. Sun. CXCR4-targeted liposomal mediated co-delivery of pirfenidone and AMD3100 for the treatment of TGFΒ-induced HSC-T6 cells activation. International Journal of Nanomedicine 14 (2019) 2927-2944.
Comments (0)