[1] F. Ghorbani Valikchali, M. Rahimnejad, A. Ramiar, M. Ezoji. Diagnostics Devices for Improving the World: μPADs Integrated with Smartphone for Colorimetric Detection of Dopamine. International Journal of Engineering 35 (2022) 1723-1727. https://doi.org/10.5829/ije.2022.35.09C.07 DOI: https://doi.org/10.5829/IJE.2022.35.09C.07
[2] A. Aliprandi, M. Longoni, L. Stanzani, L. Tremolizzo, M. Vaccaro, B. Begni, G. Galimberti, R. Garofolo, C. Ferrarese. Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. Journal of Cerebral Blood Flow and Metabolism 25(4) (2005) 513-519. https://doi.org/10.1038/sj.jcbfm.9600039 DOI: https://doi.org/10.1038/sj.jcbfm.9600039
[3] M. Gutiérrez-Capitán, A. Baldi, C. Fernández-Sánchez. Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors 20(4) (2020) 967. https://doi.org/10.3390/s20040967 DOI: https://doi.org/10.3390/s20040967
[4] H. Zhang, E. Smith, W. Zhang, A. Zhou. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Biomed Microdevices 21 (2019) 48. https://doi.org/10.1007/s10544-019-0388-7 DOI: https://doi.org/10.1007/s10544-019-0388-7
[5] S.H. Baek, C. Park, J. Jeon, S. Park. Three-Dimensional Paper-Based Microfluidic Analysis Device for Simultaneous Detection of Multiple Biomarkers with a Smartphone. Biosensors 10(11) (2020) 187. https://doi.org/10.3390/BIOS10110187 DOI: https://doi.org/10.3390/bios10110187
[6] D. Calabria, M. Zangheri, I. Trozzi, E. Lazzarini, A. Pace, M. Mirasoli, M. Guardigli. Smartphone-based chemiluminescent origami µpad for the rapid assessment of glucose blood levels. Biosensors 11(10) (2021) 381. https://doi.org/10.3390/bios11100381 DOI: https://doi.org/10.3390/bios11100381
[7] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao. Recent advances in electrochemical glucose biosensors: A review. RSC Advances 3 (2013) 4473-4491. https://doi.org/10.1039/c2ra22351a DOI: https://doi.org/10.1039/c2ra22351a
[8] C. Laghlimi, A. Moutcine, A. Chtaini, J. Isaad, A. Soufi, Y. Ziat, H. Amhamdi, H. Belkhanchi. Recent advances in electrochemical sensors and biosensors for monitoring drugs and metabolites in pharmaceutical and biological samples. ADMET and DMPK 11(2) (2023) 151-173. https://doi.org/10.5599/admet.1709 DOI: https://doi.org/10.5599/admet.1709
[9] W. Zheng, K. Wang, H. Xu, C. Zheng, B. Cao, Q. Qin, Q. Jin, D. Cui. Strategies for the detection of target analytes using microfluidic paper-based analytical devices. Analytical and Bioanalytical Chemistry 413 (2021) 2429-2445. https://doi.org/10.1007/s00216-021-03213-x DOI: https://doi.org/10.1007/s00216-021-03213-x
[10] B. Kuswandi, M.A. Hidayat, E. Noviana. Paper-based sensors for rapid important biomarkers detection. Biosensors and Bioelectronics: X 12 (2022) 100246. https://doi.org/10.1016/J.BIOSX.2022.100246 DOI: https://doi.org/10.1016/j.biosx.2022.100246
[11] Y. Xia, J. Hu, S. Zhao, L. Tao, Z. Li, T. Yue, J. Kong. Build-in sensors and analysis algorithms aided smartphone-based sensors for point-of-care tests. Biosensors and Bioelectronics: X 11 (2022) 100195. https://doi.org/10.1016/J.BIOSX.2022.100195 DOI: https://doi.org/10.1016/j.biosx.2022.100195
[12] I. Lewińska, M. Speichert, M. Granica, Ł. Tymecki. Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sensors and Actuators B 340 (2021) 129915. https://doi.org/10.1016/j.snb.2021.129915 DOI: https://doi.org/10.1016/j.snb.2021.129915
[13] L.M. Fu, Y.N. Wang. Detection methods and applications of microfluidic paper-based analytical devices. TrAC - Trends in Analytical Chemistry 107 (2018) 196-211. https://doi.org/10.1016/j.trac.2018.08.018 DOI: https://doi.org/10.1016/j.trac.2018.08.018
[14] Q.H. Nguyen, M. Il Kim. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. TrAC Trends in Analytical Chemistry 132 (2020) 116038. https://doi.org/10.1016/J.TRAC.2020.116038 DOI: https://doi.org/10.1016/j.trac.2020.116038
[15] W. Li, B. Chen, H. Zhang, Y. Sun, J. Wang, J. Zhang, Y. Fu. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosensors and Bioelectronics 66 (2015) 251-258. https://doi.org/10.1016/j.bios.2014.11.032 DOI: https://doi.org/10.1016/j.bios.2014.11.032
[16] F. Xu, Y. Sun, Y. Zhang, Y. Shi, Z. Wen, Z. Li. Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry Communications 13 (2011) 1131-1134. https://doi.org/10.1016/j.elecom.2011.07.017 DOI: https://doi.org/10.1016/j.elecom.2011.07.017
[17] L.N. Zhang, H.H. Deng, F.L. Lin, X.W. Xu, S.H. Weng, A.L. Liu, X.H. Lin, X.H. Xia, W. Chen. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Analytical Chemistry 86 (2014) 2711-2718. https://doi.org/10.1021/ac404104j DOI: https://doi.org/10.1021/ac404104j
[18] K. V. Ragavan, P. Egan, S. Neethirajan. Multi mimetic Graphene Palladium nanocomposite based colorimetric paper sensor for the detection of neurotransmitters. Sensors and Actuators B 273 (2018) 1385-1394. https://doi.org/10.1016/j.snb.2018.07.048 DOI: https://doi.org/10.1016/j.snb.2018.07.048
[19] M. Sakamoto, T. Majima. Photochemistry for the synthesis of noble metal nanoparticles. Bulletin of the Chemical Society of Japan 83(10) (2010) 1133-1154. https://doi.org/10.1246/bcsj.20100097 DOI: https://doi.org/10.1246/bcsj.20100097
[20] K. Nakada, A. Ishii. Graphene Simulation, InTech, London, United Kingdom, 2011, p. 388. ISBN: 978-953-307-556-3. https://doi.org/10.5772/20477 DOI: https://doi.org/10.5772/20477
[21] T. Yamasaki, A. Kuroda, T. Kato, J. Nara, J. Koga, T. Uda, K. Minami, T. Ohno. Multi-axis decomposition of density functional program for strong scaling up to 82,944 nodes on the K computer: Compactly folded 3D-FFT communicators in the 6D torus network. Computer Physics Communications 244 (2019) 264-276. https://doi.org/10.1016/j.cpc.2019.04.008 DOI: https://doi.org/10.1016/j.cpc.2019.04.008
[22] A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 4(1) (2019) 97-118. https://doi.org/10.17509/ijost.v4i1.15806 DOI: https://doi.org/10.17509/ijost.v4i1.15806
[23] L. Morsch, S. Farmer, K. Cunningham. Infrared Spectra of Some Common Functional Groups. in: Organic Chemistry, LibreTexts, 2022: pp. 1-10. https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_(Morsch_et_al.) (accessed February 21, 2024).
[24] E. Gharibshahi, E. Saion, A. Ashraf, L. Gharibshahi. Size‐Controlled and Optical Properties of Platinum Nanoparticles by Gamma Radiolytic Synthesis. Applied Radiation and Isotopes 130 (2017) 211-217. https://doi.org/10.1016/j.apradiso.2017.09.012 DOI: https://doi.org/10.1016/j.apradiso.2017.09.012
[25] F.T. Johra, J.W. Lee, W.G. Jung. Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry 20 (2014) 2883-2887. https://doi.org/10.1016/j.jiec.2013.11.022 DOI: https://doi.org/10.1016/j.jiec.2013.11.022
[26] S.A. Putri, Y. Yamaguchi, T.A. Ariasoca, M.Y.H. Widianto, K. Tagami, M. Saito. Electronic band structures of group-IV two-dimensional materials: Spin-orbit coupling and group theoretical analysis. Surface Science 714 (2021) 121917. https://doi.org/10.1016/j.susc.2021.121917 DOI: https://doi.org/10.1016/j.susc.2021.121917
[27] Y. Wang, J. Liu, L. Liu, D.D. Sun. High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid. Nanoscale Research Letters 6 (2011) 241. https://doi.org/10.1186/1556-276X-6-241 DOI: https://doi.org/10.1186/1556-276X-6-241
[28] M. Harada, H. Einaga. Formation mechanism of Pt particles by photoreduction of Pt ions in polymer solutions. Langmuir 22 (2006) 2371-2377. https://doi.org/10.1021/la052378m DOI: https://doi.org/10.1021/la052378m
[29] Y. Deng, C. Peng, M. Dai, D. Lin, I. Ali, S.S. Alhewairini, X. Zheng, G. Chen, J. Li, I. Naz. Recent development of super-wettable materials and their applications in oil-water separation. Journal of Cleaner Production 266 (2020) 121624. https://doi.org/10.1016/j.jclepro.2020.121624 DOI: https://doi.org/10.1016/j.jclepro.2020.121624
[30] C. Liu, F.A. Gomez, Y. Miao, P. Cui, W. Lee. A colourimetric assay system for dopamine using microfluidic paper-based analytical devices. Talanta 194 (2019) 171-176. https://doi.org/10.1016/J.TALANTA.2018.10.039 DOI: https://doi.org/10.1016/j.talanta.2018.10.039
[31] M.A.A. Ramadan, I. Almasri, G. Khayal. Spectrophotometric determination of dopamine in bulk and dosage forms using 2,4-dinitrophenylhydrazine. Turkish Journal of Pharmaceutical Sciences 17(6) (2020) 679-685. https://doi.org/10.4274/tjps.galenos.2019.25902 DOI: https://doi.org/10.4274/tjps.galenos.2019.25902
[32] D. Lavogina, H. Lust, M.J. Tahk, T. Laasfeld, H. Vellama, N. Nasirova, M. Vardja, K.L. Eskla, A. Salumets, A. Rinken, J. Jaal. Revisiting the Resazurin‐Based Sensing of Cellular Viability: Widening the Application Horizon. Biosensors 12(4) (2022) 196. https://doi.org/10.3390/bios12040196 DOI: https://doi.org/10.3390/bios12040196
[33] M. Fotouhi, S. Seidi, Y. Razeghi, S. Torfinezhad. A dual-mode assay kit using a portable potentiostat connected to a smartphone via Bluetooth communication and a potential-power angle-based paper device susceptible for low-cost point-of-care testing of iodide and dopamine. Analytica Chimica Acta 1287 (2024) 342127. https://doi.org/10.1016/j.aca.2023.342127 DOI: https://doi.org/10.1016/j.aca.2023.342127
[34] N. Agrawal, D. Baghel, D.N. Prasad, E. Kohli. Lab-on-Paper Approach in lieu of Microfluidic Paper Assisted Platform: ‘ASSURED’ sensing through Modified Graphene Quantum Dots. ChemistrySelect 9 (2024) e202303335. https://doi.org/10.1002/slct.202303335 DOI: https://doi.org/10.1002/slct.202303335
[35] Y. Yan, X. Huang, L. Yuan, Y. Tang, W. Zhu, H. Du, J. Nie, L. Zhang, S. Liao, X. Tang, Y. Zhang. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine. Analytical and Bioanalytical Chemistry 416 (2024) 4131-4141. https://doi.org/10.1007/s00216-024-05337-2 DOI: https://doi.org/10.1007/s00216-024-05337-2
[36] O. Heidary, M. Akhond, B. Hemmateenejad. A microfluidic paper-based analytical device for iodometric titration of ascorbic acid and dopamine. Microchemical Journal 182 (2022) 107886. https://doi.org/10.1016/j.microc.2022.107886 DOI: https://doi.org/10.1016/j.microc.2022.107886
[37] K.H. Chen, C.C. Liu, S.Y. Lu, S.J. Chen, F. Sheu, L.M. Fu. Rapid microfluidic analysis detection system for sodium dehydroacetate in foods. Chemical Engineering Journal 427 (2022) 131530. https://doi.org/10.1016/j.cej.2021.131530 DOI: https://doi.org/10.1016/j.cej.2021.131530
Comments (0)