Comparison of lipophilic and size-exclusion membranes: creating sink conditions with cyclodextrin

[1] P. Tőzsér, S. Kádár, E. Szabó, M. Dobó, G. Tóth, G.T. Balogh, P. Sóti, B. Sinkó, E. Borbás. Comparison of Lipophilic and Size-Exclusion Membranes: The Effect of Stirring and Cyclodextrin in the Donor Compartment. ADMET and DMPK 13(4) (2025) 2753. https://doi.org/10.5599/admet.2753 DOI: https://doi.org/10.5599/admet.2753

[2] A. Sitovs, V. Mohylyuk. Ex vivo permeability study of poorly soluble drugs across gastrointestinal membranes: acceptor compartment media composition. Drug Discovery Today 29 (2024) 104214. https://doi.org/https://doi.org/10.1016/j.drudis.2024.104214 DOI: https://doi.org/10.1016/j.drudis.2024.104214

[3] F.L. Holzem, I.H. Jensen, J. Petrig Schaffland, C. Stillhart, M. Brandl, A. Bauer-Brandl. Combining in vitro dissolution/permeation with microdialysis sampling: Capabilities and limitations for biopharma-ceutical assessments of supersaturating drug formulations. European Journal of Pharmaceutical Sciences 188 (2023) 106533. https://doi.org/https://doi.org/10.1016/j.ejps.2023.106533 DOI: https://doi.org/10.1016/j.ejps.2023.106533

[4] P.D. Nunes, A.F. Ferreira, J.F. Pinto, A. Bauer-Brandl, M. Brandl, J. Henriques, A.M. Paiva. In vitro dissolution/permeation tools for amorphous solid dispersions bioavailability forecasting II: Comparison and mechanistic insights. European Journal of Pharmaceutical Sciences 188 (2023) 106513. https://doi.org/https://doi.org/10.1016/j.ejps.2023.106513 DOI: https://doi.org/10.1016/j.ejps.2023.106513

[5] A. Cuoco, J.B. Eriksen, B. Luppi, M. Brandl, A. Bauer-Brandl. When Interactions Between Bile Salts and Cyclodextrin Cause a Negative Food Effect: Dynamic Dissolution/Permeation Studies with Itraconazole (Sporanox®) and Biomimetic Media. Journal of Pharmaceutical Sciences 112 (2023) 1372-1378. https://doi.org/https://doi.org/10.1016/j.xphs.2022.12.010 DOI: https://doi.org/10.1016/j.xphs.2022.12.010

[6] F.L. Holzem, A. Weck, J.P. Schaffland, C. Stillhart, S. Klein, A. Bauer-Brandl, M. Brandl. Biopredictive capability assessment of two dissolution/permeation assays, µFLUX™ and PermeaLoop™, using supersaturating formulations of Posaconazole. European Journal of Pharmaceutical Sciences 176 (2022) 106260. https://doi.org/https://doi.org/10.1016/j.ejps.2022.106260 DOI: https://doi.org/10.1016/j.ejps.2022.106260

[7] K. Sugano. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol 5 (2009) 259-293. https://doi.org/10.1517/17425250902835506 DOI: https://doi.org/10.1517/17425250902835506

[8] K. Sugano, Biopharmaceutics Modeling and Simulations: Theory, Practice, Methods, and Applications, John Wiley & Sons, 2012. https://doi.org/https://doi.org/10.1002/9781118354339.ch7 DOI: https://doi.org/10.1002/9781118354339

[9] W. Nernst, Theoretical Chemistry from the Standpoint of Avogadro’s Rule and Thermodynamics, Macmillan and Co., Limited, London, UK, 1911. https://archive.org/details/chemistrytheo00nernrich/page/n5/mode/2up

[10] T. Higuchi. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. Journal of Pharmaceutical Sciences 50 (1961) 874-875. https://doi.org/https://doi.org/10.1002/jps.2600501018 DOI: https://doi.org/10.1002/jps.2600501018

[11] T. Higuchi. Mechanisms of Sustained Action Mediation. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. Journal of Pharmaceutical Sciences 52 (1963) 1145-1149. https://doi.org/10.1002/jps.2600521210 DOI: https://doi.org/10.1002/jps.2600521210

[12] J. Siepmann, N.A. Peppas. Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418 (2011) 6-12. https://doi.org/10.1016/j.ijpharm.2011.03.051 DOI: https://doi.org/10.1016/j.ijpharm.2011.03.051

[13] A. Avdeef, Absorption and Drug Development: Solubility, Permeability, and Charge State; 2nd ed, John Wiley and Sons, United States. https://doi.org/10.1002/9781118286067 DOI: https://doi.org/10.1002/9781118286067

[14] M. Czajkowski, A.-C. Jacobsen, A. Bauer-Brandl, M. Brandl, P. Skupin-Mrugalska. Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery: Preparation and in-vitro biopharmaceutical characterization. International Journal of Pharmaceutics 644 (2023) 123294. https://doi.org/https://doi.org/10.1016/j.ijpharm.2023.123294 DOI: https://doi.org/10.1016/j.ijpharm.2023.123294

[15] A.-C. Jacobsen, P.A. Elvang, A. Bauer-Brandl, M. Brandl. A dynamic in vitro permeation study on solid mono- and diacyl-phospholipid dispersions of celecoxib. European Journal of Pharmaceutical Sciences 127 (2019) 199-207. https://doi.org/https://doi.org/10.1016/j.ejps.2018.11.003 DOI: https://doi.org/10.1016/j.ejps.2018.11.003

[16] S. Koplin, M. Kumpugdee-Vollrath, A. Bauer-Brandl, M. Brandl. Surfactants enhance recovery of poorly soluble drugs during microdialysis sampling: Implications for in vitro dissolution-/permeation-studies. Journal of Pharmaceutical and Biomedical Analysis 145 (2017) 586-592. https://doi.org/https://doi.org/10.1016/j.jpba.2017.07.022 DOI: https://doi.org/10.1016/j.jpba.2017.07.022

[17] D. Sironi, J. Rosenberg, A. Bauer-Brandl, M. Brandl. Dynamic dissolution-/permeation-testing of nano- and microparticle formulations of fenofibrate. European Journal of Pharmaceutical Sciences 96 (2017) 20-27. https://doi.org/https://doi.org/10.1016/j.ejps.2016.09.001 DOI: https://doi.org/10.1016/j.ejps.2016.09.001

[18] J.R. Jørgensen, W. Mohr, M. Rischer, A. Sauer, S. Mistry, T. Rades, A. Müllertz. In vitro-in vivo relationship for amorphous solid dispersions using a double membrane dissolution-permeation setup. European Journal of Pharmaceutics and Biopharmaceutics 188 (2023) 26-32. https://doi.org/https://doi.org/10.1016/j.ejpb.2023.04.026 DOI: https://doi.org/10.1016/j.ejpb.2023.04.026

[19] T. Loftsson, S.B. Vogensen, C. Desbos, P. Jansook. Carvedilol: solubilization and cyclodextrin complexation: a technical note. AAPS PharmSciTech 9 (2008) 425-430. https://doi.org/10.1208/s12249-008-9055-7 DOI: https://doi.org/10.1208/s12249-008-9055-7

[20] T. Loftsson. Cyclodextrins in Parenteral Formulations. Journal of Pharmaceutical Sciences 110 (2021) 654-664. https://doi.org/10.1016/j.xphs.2020.10.026 DOI: https://doi.org/10.1016/j.xphs.2020.10.026

[21] S. Sripetch, M. Prajapati, T. Loftsson. Cyclodextrins and Drug Membrane Permeation: Thermodynamic Considerations. Journal of Pharmaceutical Sciences 111 (2022) 2571-2580. https://doi.org/https://doi.org/10.1016/j.xphs.2022.04.015 DOI: https://doi.org/10.1016/j.xphs.2022.04.015

[22] P. Berben, E. Borbás, Intestinal Drug Absorption: Cell-Free Permeation Systems, in Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays, F.J. Hock, M.R. Gralinski, M.K. Pugsley (Eds.), Springer International Publishing, Cham, 2022, p. 1-29. https://doi.org/10.1007/978-3-030-73317-9_95-1 DOI: https://doi.org/10.1007/978-3-030-73317-9_95-1

[23] E. Borbás, A. Balogh, K. Bocz, J. Müller, É. Kiserdei, T. Vigh, B. Sinkó, A. Marosi, A. Halász, Z. Dohányos, L. Szente, G.T. Balogh, Z.K. Nagy. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. International Journal of Pharmaceutics 491 (2015) 180-189. https://doi.org/10.1016/j.ijpharm.2015.06.019 DOI: https://doi.org/10.1016/j.ijpharm.2015.06.019

[24] [24] A. Avdeef, M. Strafford, E. Block, M.P. Balogh, W. Chambliss, I. Khan. Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst. Eur J Pharm Sci 14 (2001) 271-280. https://doi.org/10.1016/s0928-0987(01)00191-9 DOI: https://doi.org/10.1016/S0928-0987(01)00191-9

[25] [25] B. Sinkó, T.M. Garrigues, G.T. Balogh, Z.K. Nagy, O. Tsinman, A. Avdeef, K. Takács-Novák. Skin-PAMPA: a new method for fast prediction of skin penetration. European Journal of Pharmaceutical Sciences 45 (2012) 698-707. https://doi.org/10.1016/j.ejps.2012.01.011 DOI: https://doi.org/10.1016/j.ejps.2012.01.011

[26] G.E. Flaten, A.B. Dhanikula, K. Luthman, M. Brandl. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. European Journal of Pharmaceutical Sciences 27 (2006) 80-90. https://doi.org/10.1016/j.ejps.2005.08.007 DOI: https://doi.org/10.1016/j.ejps.2005.08.007

[27] M. di Cagno, H.A. Bibi, A. Bauer-Brandl. New biomimetic barrier Permeapad™ for efficient investigation of passive permeability of drugs. European Journal of Pharmaceutical Sciences 73 (2015) 29-34. https://doi.org/10.1016/j.ejps.2015.03.019 DOI: https://doi.org/10.1016/j.ejps.2015.03.019

[28] A. Avdeef. The rise of PAMPA. Expert Opin Drug Metab Toxicol 1 (2005) 325-342. https://doi.org/10.1517/17425255.1.2.325 DOI: https://doi.org/10.1517/17425255.1.2.325

[29] B. Faller. Artificial membrane assays to assess permeability. Current Drug Metabolism 9 (2008) 886-892. https://doi.org/10.2174/138920008786485227 DOI: https://doi.org/10.2174/138920008786485227

[30] M. Kansy, F. Senner, K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41 (1998) 1007-1010. https://doi.org/10.1021/jm970530e DOI: https://doi.org/10.1021/jm970530e

[31] P. Berben, A. Bauer-Brandl, M. Brandl, B. Faller, G.E. Flaten, A.-C. Jacobsen, J. Brouwers, P. Augustijns. Drug permeability profiling using cell-free permeation tools: Overview and applications. European Journal of Pharmaceutical Sciences 119 (2018) 219-233. https://doi.org/https://doi.org/10.1016/j.ejps.2018.04.016 DOI: https://doi.org/10.1016/j.ejps.2018.04.016

[32] A. Adhikari, P.R. Seo, J.E. Polli. Characterization of Dissolution-Permeation System using Hollow Fiber Membrane Module and Utility to Predict in Vivo Drug Permeation Across BCS Classes. Journal of Pharmaceutical Sciences 111 (2022) 3075-3087. https://doi.org/10.1016/j.xphs.2022.07.002 DOI: https://doi.org/10.1016/j.xphs.2022.07.002

[33] J.P. O'Shea, P. Augustijns, M. Brandl, D.J. Brayden, J. Brouwers, B.T. Griffin, R. Holm, A.C. Jacobsen, H. Lennernäs, Z. Vinarov, C.M. O'Driscoll. Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review. European Journal of Pharmaceutical Sciences 170 (2022) 106098. https://doi.org/10.1016/j.ejps.2021.106098 DOI: https://doi.org/10.1016/j.ejps.2021.106098

[34] E. Borbás, P. Tőzsér, K. Tsinman, O. Tsinman, K. Takács-Novák, G. Völgyi, B. Sinkó, Z.K. Nagy. Effect of Formulation Additives on Drug Transport through Size-Exclusion Membranes. Molecular Pharmaceutics 15 (2018) 3308-3317. https://doi.org/10.1021/acs.molpharmaceut.8b00343 DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00343

[35] P. Berben, J. Brouwers, P. Augustijns. The artificial membrane insert system as predictive tool for formulation performance evaluation. International Journal of Pharmaceutics 537 (2018) 22-29. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.12.025 DOI: https://doi.org/10.1016/j.ijpharm.2017.12.025

[36] [36] P. Berben, J. Brouwers, P. Augustijns. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System. Journal of Pharmaceutical Sciences 107 (2018) 250-256. https://doi.org/10.1016/j.xphs.2017.08.002 DOI: https://doi.org/10.1016/j.xphs.2017.08.002

[37] C. Washington. Drug release from microdisperse systems: a critical review. International Journal of Pharmaceutics 58 (1990) 1-12. https://doi.org/10.1016/0378-5173(90)90280-H DOI: https://doi.org/10.1016/0378-5173(90)90280-H

[38] P. Saokham, A. Sá Couto, A. Ryzhakov, T. Loftsson. The self-assemble of natural cyclodextrins in aqueous solutions: Application of miniature permeation studies for critical aggregation concentration (cac) determinations. International Journal of Pharmaceutics 505 (2016) 187-193. https://doi.org/10.1016/j.ijpharm.2016.03.049 DOI: https://doi.org/10.1016/j.ijpharm.2016.03.049

[39] J. Bouayed, L. Hoffmann, T. Bohn. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128 (2011) 14-21. https://doi.org/10.1016/j.foodchem.2011.02.052 DOI: https://doi.org/10.1016/j.foodchem.2011.02.052

[40] S.A. Raina, G.G. Zhang, D.E. Alonzo, J. Wu, D. Zhu, N.D. Catron, Y. Gao, L.S. Taylor. Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. Pharmaceutical Research 32 (2015) 3350-3364. https://doi.org/10.1007/s11095-015-1712-4 DOI: https://doi.org/10.1007/s11095-015-1712-4

[41] A.S. Indulkar, Y. Gao, S.A. Raina, G.G. Zhang, L.S. Taylor. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics 13 (2016) 2059-2069. https://doi.org/10.1021/acs.molpharmaceut.6b00202 DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00202

[42] G. Caron, G. Steyaert, A. Pagliara, F. Reymond, P. Crivori, P. Gaillard, P.A. Carrupt, A. Ardeef, J. Comer, K.J. Box, H.H. Girault, B. Testa. Structure-Lipophilicity Relationships of Neutral and Protonated β-Blockers, Part I, Intra- and Intermolecular Effects in Isotropic Solvent Systems. Wiley-VHCA AG, 1999, pp. 1211-1222. https://doi.org/10.1002/(SICI)1522-2675(19990804)82:8%3C1211::AID-HLCA1211%3E3.0.CO;2-K DOI: https://doi.org/10.1002/(SICI)1522-2675(19990804)82:8<1211::AID-HLCA1211>3.0.CO;2-K

[43] A. Singh, M. Pallastrelli, M. Santoro. Direct chiral separations of third generation b-blockers through high performance liquid chromatography. Scientia Chromatographica 7 (2015) 65-84. https://doi.org/10.4322/sc.2015.017 DOI: https://doi.org/10.4322/sc.2015.017

[44] N.A. Al-Rawashdeh, K.S. Al-Sadeh, M.B. Al-Bitar. Physicochemical study on microencapsulation of hydroxypropyl-beta-cyclodextrin in dermal preparations. Drug Dev Ind Pharm 36 (2010) 688-697. https://doi.org/10.3109/03639040903449738 DOI: https://doi.org/10.3109/03639040903449738

[45] Patient Information of Sporanox (Itraconazole) Capsules. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020083s062lbl.pdf (accessed 24 June 2025)

[46] A. Dahan, J.M. Miller, A. Hoffman, G.E. Amidon, G.L. Amidon. The solubility-permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. Journal of Pharmaceutical Sciences 99 (2010) 2739-2749 https://doi.org/10.1002/jps.22033 DOI: https://doi.org/10.1002/jps.22033

Comments (0)

No login
gif