Electrochemical determination of calcium folinate in the presence of methotrexate and 5-fluorouracil using UiO-66/CdS composite modified screen-printed carbon electrode

[1] R. Šelešovská, B. Kränková, M. Štěpánková, P. Martinková, L. Janíková, J. Chýlková, T. Navrátil. Voltammetric determination of leucovorin in pharmaceutical preparations using a boron-doped diamond electrode. Monatshefte für Chemie 149 (2018) 1701-1708. https://doi.org/10.1007/s00706-018-2200-4 DOI: https://doi.org/10.1007/s00706-018-2200-4

[2] Z. Zhu, F. Wang, F. Wang, L. Xi. Simultaneous determination of methotrexate and calcium folinate with electrochemical method based on a poly-ABSA/functionalized MWNTs composite film modified electrode. Journal of Electroanalytical Chemistry 708 (2013) 13-19. https://doi.org/10.1016/j.jelechem.2013.09.004 DOI: https://doi.org/10.1016/j.jelechem.2013.09.004

[3] S.L. Fereja, P. Li, J. Guo, Z. Fang, Z. Zhang, Z. Zhuang, X. Zhang, K. Liu, W. Chen. Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid. Talanta 233 (2021) 122469. https://doi.org/10.1016/j.talanta.2021.122469 DOI: https://doi.org/10.1016/j.talanta.2021.122469

[4] Z. Deng, H. Li, Q. Tian, Y. Zhou, X. Yang, Y. Yu, B. Jiang, T. Xu, T. Zhou. Electrochemical detection of methotrexate in serum sample based on the modified acetylene black sensor. Microchemical Journal 157 (2020) 105058. https://doi.org/10.1016/j.microc.2020.105058 DOI: https://doi.org/10.1016/j.microc.2020.105058

[5] M. Mollaei, S.M. Ghoreishi, A. Khoobi. Nano-molar level detection of calcium folinate and methotrexate using a cationic surfactant and multivariate optimization: A simple tool for simultaneous and sensitive analysis. Measurement 152 (2020) 107362. https://doi.org/10.1016/j.measurement.2019.107362 DOI: https://doi.org/10.1016/j.measurement.2019.107362

[6] K.O. Adeniyi, B. Osmanaj, G. Manavalan, A. Samikannu, J.P. Mikkola, B. Avni, J.F. Boily, S. Tesfalidet. Engineering of layered iron vanadate nanostructure for electrocatalysis: Simultaneous detection of methotrexate and folinic acid in blood serum. Electrochimica Acta 458 (2023) 142538. https://doi.org/10.1016/j.electacta.2023.142538 DOI: https://doi.org/10.1016/j.electacta.2023.142538

[7] F. De Vita, M. Orditura, E. Matano, R. Bianco, C. Carlomagno, S. Infusino, A.R. Bianco. A phase II study of biweekly oxaliplatin plus infusional 5-fluorouracil and folinic acid (FOLFOX-4) as first-line treatment of advanced gastric cancer patients. British Journal of Cancer 92 (2005) 1644-1649. https://doi.org/10.1038/sj.bjc.6602573 DOI: https://doi.org/10.1038/sj.bjc.6602573

[8] M.U. Minhas, O. Abdullah, M. Sohail, I. Khalid, S. Ahmad, K.U. Khan, S.F. Badshah. Synthesis of novel combinatorial drug delivery system (nCDDS) for co-delivery of 5-fluorouracil and leucovorin calcium for colon targeting and controlled drug release. Drug Development and Industrial Pharmacy 47 (2021) 1952-1965. https://doi.org/10.1080/03639045.2022.2072514 DOI: https://doi.org/10.1080/03639045.2022.2072514

[9] S.D. Bukkitgar, N.P. Shetti. Electrochemical sensor for the determination of anticancer drug 5‐fluorouracil at glucose modified electrode. ChemistrySelect 1 (2016) 771-777. https://doi.org/10.1002/slct.201600197 DOI: https://doi.org/10.1002/slct.201600197

[10] S. Belz, C. Frickel, C. Wolfrom, H. Nau, G. Henze. High-performance liquid chromatographic determination of methotrexate, 7-hydroxymethotrexate, 5-methyltetrahydrofolic acid and folinic acid in serum and cerebrospinal fluid. Journal of Chromatography B 661 (1994) 109-118. https://doi.org/10.1016/0378-4347(94)00328-9 DOI: https://doi.org/10.1016/0378-4347(94)00328-9

[11] C. Vandenbosch, S. Van Belle, M. De Smet, G. Taton, V. Bruynseels, G. Vandenhoven, D.L. Massart. Determination of leucovorin and 5-fluorouracil in plasma by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications 612 (1993) 77-85. https://doi.org/10.1016/0378-4347(93)80370-J DOI: https://doi.org/10.1016/0378-4347(93)80370-J

[12] O. Van Tellingen, H.R. Van Der Woude, J.H. Beijnen, C.J.T. Van Beers, W.J. Nooyen. Stable and sensitive method for the simultaneous determination of N5-methyltetrahydrofolate, leucovorin, methotrexate and 7-hydroxymethotrexate in biological fluids. Journal of Chromatography B: Biomedical Sciences and Applications 488 (1989) 379-388. https://doi.org/10.1016/S0378-4347(00)82962-X DOI: https://doi.org/10.1016/S0378-4347(00)82962-X

[13] J.R. Flores, G.C. Peñalvo, A.E. Mansilla, M.R. Gómez. Capillary electrophoretic determination of methotrexate, leucovorin and folic acid in human urine. Journal of Chromatography B 819 (2005) 141-147. https://doi.org/10.1016/j.jchromb.2005.01.039 DOI: https://doi.org/10.1016/j.jchromb.2005.01.039

[14] A. Espinosa-Mansilla, I.D. Merás, M.J.R. Gomez, A.M. de la Pena, F. Salinas. Selection of the wavelength range and spectrophotometric determination of leucovorin and methotrexate in human serum by a net analyte signal based method. Talanta 58 (2002) 255-263. https://doi.org/10.1016/S0039-9140(02)00243-6 DOI: https://doi.org/10.1016/S0039-9140(02)00243-6

[15] Y. Xu, X. Gao, T. Tao, L. Ji, M. Liu, X. Zhang, D. Xiao. Sensitive electrochemical determination of quercetin and folic acid with cobalt nanoparticle functionalized multi-walled carbon nanotube. Microchimica Acta 191 (2024) 518. https://doi.org/10.1007/s00604-024-06574-z DOI: https://doi.org/10.1007/s00604-024-06574-z

[16] B.D. Mansuriya, Z. Altintas. Enzyme-free electrochemical nano-immunosensor based on graphene quantum dots and gold nanoparticles for cardiac biomarker determination. Nanomaterials 11 (2021) 578. https://doi.org/10.3390/nano11030578 DOI: https://doi.org/10.3390/nano11030578

[17] H.S. Magar, R.Y. Hassan, M.N. Abbas. Non-enzymatic disposable electrochemical sensors based on CuO/Co3O4@MWCNTs nanocomposite modified screen-printed electrode for the direct determi-nation of urea. Scientific Reports 13 (2023) 2034. https://doi.org/10.1038/s41598-023-28930-4 DOI: https://doi.org/10.1038/s41598-023-28930-4

[18] A.Y. Kabaca, M.B. Kamaç, M. Yılmaz, T. Atıcı. Ultra-sensitive electrochemical sensors for simultaneous determination of dopamine and serotonin based on titanium oxide-gold nanoparticles-poly Nile blue (in deep eutectic solvent). Electrochimica Acta 467 (2023) 143046. https://doi.org/10.1016/j.electacta.2023.143046 DOI: https://doi.org/10.1016/j.electacta.2023.143046

[19] G. Celik Cogal, S. Cogal, P. Machata, A. Uygun Oksuz, M. Omastová. Electrospun cobalt-doped 2D-MoSe2/polypyrrole hybrid-based carbon nanofibers as electrochemical sensing platforms. Microchimica Acta 191 (2024) 75. https://doi.org/10.1007/s00604-023-06078-2 DOI: https://doi.org/10.1007/s00604-023-06078-2

[20] M.K.M. Esfahani, S.E. Alavi, P.J. Cabot, N. Islam, E.L. Izake. PEGylated Mesoporous Silica Nanoparticles (MCM-41): A promising carrier for the targeted delivery of fenbendazole into prostrate cancer cells. Pharmaceutics 13 (2021) 1605. https://doi.org/10.3390/pharmaceutics13101605 DOI: https://doi.org/10.3390/pharmaceutics13101605

[21] X. Xu, P. Xue, M. Gao, Y. Li, Z. Xu, Y. Wei, Z. Zhang, Y. Liu, L. Wang, H. Liu, B. Cheng. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: Techniques, applications, and perspectives. Advances in Colloid and Interface Science 321 (2023) 102987. https://doi.org/10.1016/j.cis.2023.102987 DOI: https://doi.org/10.1016/j.cis.2023.102987

[22] A. Rebekah, S. Anantharaj, C. Viswanthan, N. Ponpandian. Zn-substituted MnCo2O4 nanostructure anchored over rGO for boosting the electrocatalytic performance towards methanol oxidation and oxygen evolution reaction (OER). International Journal of Hydrogen Energy 45 (2020) 14713-14727. https://doi.org/10.1016/j.ijhydene.2020.03.231 DOI: https://doi.org/10.1016/j.ijhydene.2020.03.231

[23] G. Bhandari, A. Dhasmana, P. Chaudhary, S. Gupta, S. Gangola, A. Gupta, P. Slama. A perspective review on green nanotechnology in agro-ecosystems: opportunities for sustainable agricultural practices & environmental remediation. Agriculture 13 (2023) 668. https://doi.org/10.3390/agriculture13030668 DOI: https://doi.org/10.3390/agriculture13030668

[24] E. Lulek, J. Soleymani, M. Molaparast, Y.N. Ertas. Electrochemical sensing of doxorubicin hydrochloride under sodium alginate antifouling conditions using silver nanoparticles modified glassy carbon electrodes, Talanta 26 (2023) 124846. https://doi.org/10.1016/j.talanta.2023.124846 DOI: https://doi.org/10.1016/j.talanta.2023.124846

[25] F. Aslam, A. Shah, N. Ullah, S. Munir. Multiwalled carbon nanotube/Fe-doped ZnO-based sensors for droplet electrochemical detection and degradation monitoring of brilliant green. ACS Applied Nano Materials 6 (2023) 6172-6185. https://doi.org/10.1021/acsanm.3c00488 DOI: https://doi.org/10.1021/acsanm.3c00488

[26] D. Li, A. Yadav, H. Zhou, K. Roy, P. Thanasekaran, C. Lee. Advances and applications of metal‐organic frameworks (MOFs) in emerging technologies: a comprehensive review. Global Challenges 8 (2024) 2300244. https://doi.org/10.1002/gch2.202300244 DOI: https://doi.org/10.1002/gch2.202300244

[27] A. Gowdhaman, S.A. Kumar, D. Elumalai, C. Balaji, M. Sabarinathan, R. Ramesh, M. Navaneethan. Ni-MOF derived NiO/Ni/r-GO nanocomposite as a novel electrode material for high-performance asymmetric supercapacitor. Journal of Energy Storage 61 (2023) 106769. https://doi.org/10.1016/j.est.2023.106769 DOI: https://doi.org/10.1016/j.est.2023.106769

[28] L. Yaqoob, T. Noor, N. Iqbal, H. Nasir, M. Sohail, N. Zaman, M. Usman. Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: an efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renewable Energy 156 (2020) 1040-1054. https://doi.org/10.1016/j.renene.2020.04.131 DOI: https://doi.org/10.1016/j.renene.2020.04.131

[29] A. Husna, I. Hossain, O. Choi, S.M. Lee, T.H. Kim. Efficient CO2 separation using a PIM‐PI‐functionalized UiO‐66 MOF incorporated mixed matrix membrane in a PIM‐PI‐1 polymer. Macromolecular Materials and Engineering 306 (2021) 2100298. https://doi.org/10.1002/mame.202100298 DOI: https://doi.org/10.1002/mame.202100298

[30] A. Bieniek, A.P. Terzyk, M. Wiśniewski, K. Roszek, P. Kowalczyk, L. Sarkisov, S. Keskin, K. Kaneko. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives. Progress in Materials Science 117 (2021) 100743. https://doi.org/10.1016/j.pmatsci.2020.100743 DOI: https://doi.org/10.1016/j.pmatsci.2020.100743

[31] H. Singh, A. Deep, S. Puri, M. Khatri, N. Bhardwaj. UiO-66-NH2 MOF-based fluorescent aptasensor for detection of zearalenone in cereals. Food Control 163 (2024) 110497. https://doi.org/10.1016/j.foodcont.2024.110497 DOI: https://doi.org/10.1016/j.foodcont.2024.110497

[32] Y. Li, L. Zhang, M. Wu, G. Ma, M. Motlak, A. Mahdi. Novel electrochemical strategy for determination of anticancer drug flutamide based on MXene/MOF composite. Inorganic Chemistry Communications 155 (2023) 111061. https://doi.org/10.1016/j.inoche.2023.111061 DOI: https://doi.org/10.1016/j.inoche.2023.111061

[33] P. Gao, M.Z. Hussain, Z. Zhou, J. Warnan, M. Elsner, R.A. Fischer. Zr-based metalloporphyrin MOF probe for electrochemical detection of parathion-methyl. Biosensors and Bioelectronics 261 (2024) 116515. https://doi.org/10.1016/j.bios.2024.116515 DOI: https://doi.org/10.1016/j.bios.2024.116515

[34] R. Sun, R. Lv, Y. Li, T. Du, L. Chen, Y. Zhang, X. Zhang, L. Zhang, H. Ma, H. Sun, Y. Qi. Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene. Food Control 145 (2023) 109491. https://doi.org/10.1016/j.foodcont.2022.109491 DOI: https://doi.org/10.1016/j.foodcont.2022.109491

[35] Z. Duan, C. Huang, X. Yang, A. Hu, X. Lu, Q. Jiang. Preparation of SnS2/MWCNTs chemically modified electrode and its electrochemical detection of H2O2. Analytical and Bioanalytical Chemistry 412 (2020) 4403-4412. https://doi.org/10.1007/s00216-020-02682-w DOI: https://doi.org/10.1007/s00216-020-02682-w

[36] Y. Bakytkarim, S. Tursynbolat, Z.S. Mukatayeva, Y. Tileuberdi, N.A. Shadin, Z.M. Assirbayeva, Z. Toktarbay. High-sensitivity electrochemical detection of chlorogenic acid based on Pt@r-GO@MWCNTs ternary nanocomposites modified electrodes. Engineering Science 30 (2024) 1178. https://dx.doi.org/10.30919/es1178 DOI: https://doi.org/10.30919/es1178

[37] P. Ming, Y. Niu, Y. Liu, J. Wang, H. Lai, Q. Zhou, H. Zhai. An electrochemical sensor based on Cu-MOF-199@MWCNTs laden with Cu NPs for the sensitive detection of creatinine. Langmuir 39 (2023) 13656-13667. https://doi.org/10.1021/acs.langmuir.3c01823 DOI: https://doi.org/10.1021/acs.langmuir.3c01823

[38] J. Feng, C. Li, X. Min, X. Lin. Co-MOF@MWCNTs/GCE for the sensitive detection of TBHQ in food samples. Dalton Transactions 52 (2023) 16754-16766. https://doi.org/10.1039/D3DT03158F DOI: https://doi.org/10.1039/D3DT03158F

[39] D. Antuña-Jiménez, M.B. González-García, D. Hernández-Santos, P. Fanjul-Bolado. Screen-printed electrodes modified with metal nanoparticles for small molecule sensing. Biosensors 10 (2020) 9. https://doi.org/10.3390/bios10020009 DOI: https://doi.org/10.3390/bios10020009

[40] E. Alberto, J. Bastos-Arrieta, C. Pérez-Ràfols, N. Serrano, M.S. Díaz-Cruz, J.M. Díaz-Cruz. Voltammetric determination of sulfamethoxazole using commercial screen-printed carbon electrodes. Microchemical Journal 193 (2023) 109125. https://doi.org/10.1016/j.microc.2023.109125 DOI: https://doi.org/10.1016/j.microc.2023.109125

[41] P.C. Gomes-Junior, E.D. Nascimento, K.K. de Lima Augusto, G.P. Longatto, R.C. Faria, E. Piccin, O. Fatibello-Filho. Voltammetric determination of uric acid using a miniaturized platform based on screen-printed electrodes modified with platinum nanoparticles. Microchemical Journal 207 (2024) 111931. https://doi.org/10.1016/j.microc.2024.111931 DOI: https://doi.org/10.1016/j.microc.2024.111931

[42] Y. Wu, J. Han, P. Xue, R. Xu, Y. Kang. Nano metal–organic framework (NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells. Nanoscale 7 (2015) 1753-1759. https://doi.org/10.1039/C4NR05447D DOI: https://doi.org/10.1039/C4NR05447D

[43] H.Q. Xu, S. Yang, X. Ma, J. Huang, H.L. Jiang. Unveiling charge-separation dynamics in CdS/metal–organic framework composites for enhanced photocatalysis. ACS Catalysis 8 (2018) 11615-11621. https://doi.org/10.1021/acscatal.8b03233 DOI: https://doi.org/10.1021/acscatal.8b03233

Comments (0)

No login
gif