Epithelial-mesenchymal dynamics in cancer: Role of signalling pathways, stromal interactions and natural therapies

[1] V. Das, S. Bhattacharya, C. Chikkaputtaiah, S. Hazra, M. Pal. The basics of epithelial-mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. Journal of Cellular Physiology 234 (2019) 14535-14555. https://doi.org/10.1002/jcp.28160 DOI: https://doi.org/10.1002/jcp.28160

[2] D. Pei, X. Shu, A. Gassama-Diagne, J.P. Thiery. Mesenchymal-epithelial transition in development and reprogramming. Nature Cell Biology 21 (2019) 44-53. https://doi.org/10.1038/s41556-018-0195-z DOI: https://doi.org/10.1038/s41556-018-0195-z

[3] G.D. Marconi, L. Fonticoli, T.S. Rajan, S.D. Pierdomenico, O. Trubiani, J. Pizzicannella, F. Diomede, A. Piattelli, S. Guarnieri, T. Traini. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells 10 (2021) 1587. https://doi.org/10.3390/cells10071587 DOI: https://doi.org/10.3390/cells10071587

[4] I. Pastushenko, A. Brisebarre, A. Sifrim, M. Fioramonti, T. Revenco, S. Boumahdi, A. Van Keymeulen, D. Brown, V. Moers, S. Lemaire, S. De Clercq, C. Gong, Y. Sokolow, M. Trekels, F. De Cock, D. Furlan, L. Spina, G. Lippi, A.M. Arias, C. Blanpain. Identification of the tumour transition states occurring during EMT. Nature 556 (2018) 463-468. https://doi.org/10.1038/s41586-018-0040-3 DOI: https://doi.org/10.1038/s41586-018-0040-3

[5] A. Owusu-Akyaw, K. Krishnamoorthy, L.T. Goldsmith, S.S. Morelli. The role of mesenchymal-epithelial transition in endometrial function. Human Reproduction Update 25 (2019) 114-133. https://doi.org/10.1093/humupd/dmy035 DOI: https://doi.org/10.1093/humupd/dmy035

[6] T. Liao, M. Yang. Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Molecular Oncology 11 (2017) 792-804. https://doi.org/10.1002/1878-0261.12096 DOI: https://doi.org/10.1002/1878-0261.12096

[7] H. Wang, J.J. Unternaehrer. Epithelial-mesenchymal transition and cancer stem cells: at the crossroads of differentiation and dedifferentiation. Developmental Dynamics 248 (2019) 10-20. https://doi.org/10.1002/dvdy.24678 DOI: https://doi.org/10.1002/dvdy.24678

[8] D.R. Pattabiraman, B. Bierie, K.I. Kober, P. Thiru, J.A. Krall, C. Zill, F. Reinhardt, W.L. Tam, R.A. Weinberg. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science 351 (2016) aad3680. https://doi.org/10.1126/science.aad3680 DOI: https://doi.org/10.1126/science.aad3680

[9] F.M. Davis, T.A. Stewart, E.W. Thompson, G.R. Monteith. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends in Pharmacological Sciences 35 (2014) 479-488. https://doi.org/10.1016/j.tips.2014.06.006 DOI: https://doi.org/10.1016/j.tips.2014.06.006

[10] N. Zhang, A.S. Ng, S. Cai, Q. Li, L. Yang, D. Kerr. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. The Lancet Oncology 22 (2021) e358-e368. https://doi.org/10.1016/S1470-2045(21)00343-0 DOI: https://doi.org/10.1016/S1470-2045(21)00343-0

[11] S. Shi, Y. Qin, D. Chen, Y. Deng, J. Yin, S. Liu, J. Song, Y. Wu, J. Zhao, X. Li. Echinacoside (ECH) suppresses proliferation, migration, and invasion of human glioblastoma cells by inhibiting Skp2-triggered epithelial-mesenchymal transition (EMT). European Journal of Pharmacology 922 (2022) 175176. https://doi.org/10.1016/j.ejphar.2022.175176 DOI: https://doi.org/10.1016/j.ejphar.2022.175176

[12] M. Singh, N. Yelle, C. Venugopal, S.K. Singh. EMT: mechanisms and therapeutic implications. Pharmacology & Therapeutics 182 (2018) 80-94. https://doi.org/10.1016/j.pharmthera.2017.08.009 DOI: https://doi.org/10.1016/j.pharmthera.2017.08.009

[13] J. Lim, J.P. Thiery. Epithelial-mesenchymal transitions: insights from development. Development 139 (2012) 3471-3486. https://doi.org/10.1242/dev.071209 DOI: https://doi.org/10.1242/dev.071209

[14] V. Bolós, H. Peinado, M.A. Pérez-Moreno, M.F. Fraga, M. Esteller, A. Cano. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science 116 (2003) 499-511. https://doi.org/10.1242/jcs.00224 DOI: https://doi.org/10.1242/jcs.00224

[15] S. Lamouille, J. Xu, R. Derynck. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 15 (2014) 178-196. https://doi.org/10.1038/nrm3758 DOI: https://doi.org/10.1038/nrm3758

[16] E. Sánchez-Tilló, Y. Liu, O. De Barrios, L. Siles, L. Fanlo, M. Cuatrecasas, D.S. Darling, A. Castells, A. Postigo. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cellular and Molecular Life Sciences 69 (2012) 3429-3456. https://doi.org/10.1007/s00018-012-1122-2 DOI: https://doi.org/10.1007/s00018-012-1122-2

[17] S. Brabletz, K. Bajdak, S. Meidhof, U. Burk, G. Niedermann, E. Firat, U. Wellner, A. Dimmler, G. Faller, J. Schubert, T. Brabletz. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. The EMBO Journal 30 (2011) 770-782. https://doi.org/10.1038/emboj.2010.349 DOI: https://doi.org/10.1038/emboj.2010.349

[18] E. Sanchez-Tillo, O. De Barrios, E. Valls, D.S. Darling, A. Castells, A. Postigo. ZEB1 and TCF4 reciprocally modulate their transcriptional activities to regulate Wnt target gene expression. Oncogene 34 (2015) 5760-5770. https://doi.org/10.1038/onc.2015.352 DOI: https://doi.org/10.1038/onc.2015.352

[19] A. Du Toit. When signals cross. Nature Reviews Molecular Cell Biology 16 (2015) 204. https://doi.org/10.1038/nrm3973 DOI: https://doi.org/10.1038/nrm3973

[20] Y. Tang, G. Herr, W. Johnson, E. Resnik, J. Aho. Induction and analysis of epithelial to mesenchymal transition. Journal of Visualized Experiments 78 (2013) e50478. https://doi.org/10.3791/50478 DOI: https://doi.org/10.3791/50478-v

[21] D.J. McGrail, R. Mezencev, Q.M.N. Kieu, J.F. McDonald, M.R. Dawson. SNAIL-induced epithelial-to-mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression. Federation of American Societies for Experimental Biology (FASEB) 29 (2015) 1280-1289. https://doi.org/10.1096/fj.14-257345 DOI: https://doi.org/10.1096/fj.14-257345

[22] Y. Panahi, B. Darvishi, M. Ghanei, N. Jowzi, F. Beiraghdar, B.S. Varnamkhasti. Molecular mechanisms of curcumin’s suppressing effects on tumorigenesis, angiogenesis and metastasis, focusing on NF-κB pathway. Cytokine and Growth Factor Reviews 28 (2016) 21-29. https://doi.org/10.1016/j.cytogfr.2015.12.004 DOI: https://doi.org/10.1016/j.cytogfr.2015.12.004

[23] Y.J. Lee, J.H. Park, S.M. Oh. Activation of NF-κB by TOPK upregulates Snail/Slug expression in TGF-1 signaling to induce epithelial-mesenchymal transition and invasion of breast cancer cells. Biochemical and Biophysical Research Communications 530 (2020) 122-129. https://doi.org/10.1016/j.bbrc.2020.07.015 DOI: https://doi.org/10.1016/j.bbrc.2020.07.015

[24] K. Zhang, J. Zhao, X. Liu, B. Yan, D. Chen, Y. Gao, Y. Li, Y. Wang, X. Wang, W. Wu. Activation of NF-κB upregulates Snail and consequent repression of E-cadherin in cholangiocarcinoma cell invasion. Hepato-Gastroenterology 58 (2011) 1-7. https://europepmc.org/article/med/21510277

[25] T. Shibue, R.A. Weinberg. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature Reviews Clinical Oncology 14 (2017) 611-629. https://doi.org/10.1038/nrclinonc.2017.44 DOI: https://doi.org/10.1038/nrclinonc.2017.44

[26] U. Wellner, J. Schubert, U.C. Burk, O. Schmalhofer, F. Zhu, A. Sonntag, B. Waldvogel, C. Vannier, D. Darling, A. zur Hausen, T. Brabletz. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology 11 (2009) 1487-1495. https://doi.org/10.1038/ncb1998 DOI: https://doi.org/10.1038/ncb1998

[27] B. Beck, G. Lapouge, S. Rorive, B. Drogat, K. Desaedelaere, S. Delafaille, C. Dubois, I. Salmon, K. Willekens, J.C. Marine, C. Blanpain. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16 (2015) 67-79. https://doi.org/10.1016/j.stem.2014.12.002 DOI: https://doi.org/10.1016/j.stem.2014.12.002

[28] N.M. Aiello, T. Brabletz, Y. Kang, M.A. Nieto, R.A. Weinberg, B.Z. Stanger. Upholding a role for EMT in pancreatic cancer metastasis. Nature 547 (2017) E7-E8. https://doi.org/10.1038/nature22963 DOI: https://doi.org/10.1038/nature22963

[29] A.R. Lourenco, Y. Ban, M.J. Crowley, S.B. Lee, D. Ramchandani, W. Du, K.D. Sullivan, J.P. Hagan, K.S. Rathi, S. Sinha, A. Prat, M. Dowsett, C.M. Perou, K. Taniguchi, N.T. Ueno, H. Gao, L.M. Heiser, C.J. Creighton, J.M. Rosen. Differential contributions of pre- and post-EMT tumor cells in breast cancer metastasis. Cancer Research 80 (2020) 163-169. https://doi.org/10.1158/0008-5472.CAN-19-1427 DOI: https://doi.org/10.1158/0008-5472.CAN-19-1427

[30] S. Spaderna, O. Schmalhofer, M. Wahlbuhl, A. Dimmler, K. Bauer, A. Sultan, F. Hlubek, A. Jung, D. Strand, E. Eger, T. Kirchner, J. Behrens, T. Brabletz. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research 68 (2008) 537-544. https://doi.org/10.1158/0008-5472.CAN-07-5682 DOI: https://doi.org/10.1158/0008-5472.CAN-07-5682

[31] W. Guo, Z. Keckesova, J.L. Donaher, T. Shibue, V. Tischler, F. Reinhardt, S. Itzkovitz, A. Noske, U. Zürrer-Härdi, G. Bell, W.L. Tam, R.A. Weinberg. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148 (2012) 1015-1028. https://doi.org/10.1016/j.cell.2012.02.008 DOI: https://doi.org/10.1016/j.cell.2012.02.008

[32] J. Yang, S.A. Mani, J.L. Donaher, S. Ramaswamy, R.A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, R.A. Weinberg. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117 (2004) 927-939. https://doi.org/10.1016/j.cell.2004.06.006 DOI: https://doi.org/10.1016/j.cell.2004.06.006

[33] Y. Xu, D.K. Lee, Z. Feng, Y. Xu, W. Bu, Y. Li, L. Liao, J. Xu. Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America 114 (2017) 11494-11499. https://doi.org/10.1073/pnas.1618091114 DOI: https://doi.org/10.1073/pnas.1618091114

[34] H.D. Tran, K. Luitel, M. Kim, K. Zhang, G.D. Longmore, D.D. Tran. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Research 74 (2014) 6330-6340. https://doi.org/10.1158/0008-5472.CAN-14-0923 DOI: https://doi.org/10.1158/0008-5472.CAN-14-0923

[35] J.H. Tsai, J.L. Donaher, D.A. Murphy, S. Chau, J. Yang. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22 (2012) 725-736. https://doi.org/10.1016/j.ccr.2012.09.022 DOI: https://doi.org/10.1016/j.ccr.2012.09.022

[36] M. Reichert, B. Bakir, L. Moreira, J.R. Pitarresi, K. Feldmann, L. Simon, K. Suzuki, R. Maddipati, A.D. Rhim, B.Z. Stanger. Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer. Developmental Cell 45 (2018) 696-711. https://doi.org/10.1016/j.devcel.2018.05.025 DOI: https://doi.org/10.1016/j.devcel.2018.05.025

[37] Y. Shang, X. Cai, D. Fan. Roles of epithelial-mesenchymal transition in cancer drug resistance. Current Cancer Drug Targets 13 (2013) 915-929. https://doi.org/10.2174/15680096113136660097 DOI: https://doi.org/10.2174/15680096113136660097

[38] N. Vasan, J. Baselga, D.M. Hyman. A view on drug resistance in cancer. Nature 575 (2019) 299-309. https://doi.org/10.1038/s41586-019-1730-1 DOI: https://doi.org/10.1038/s41586-019-1730-1

[39] B. Mansoori, A. Mohammadi, S. Davudian, S. Shirjang, B. Baradaran. The different mechanisms of cancer drug resistance: a brief review. Advanced Pharmaceutical Bulletin 7 (2017) 339-348. https://doi.org/10.15171/apb.2017.041 DOI: https://doi.org/10.15171/apb.2017.041

[40] J. De Las Rivas, A. Brozovic, S. Izraely, A. Casas-Pais, I.P. Witz, A. Figueroa. Cancer drug resistance induced by EMT: novel therapeutic strategies. Archives of Toxicology 95 (2021) 2279-2297. https://doi.org/10.1007/s00204-021-03063-7 DOI: https://doi.org/10.1007/s00204-021-03063-7

[41] G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre, N. Snyder, S. Sarkar. Drug resistance in cancer: an overview. Cancers 6 (2014) 1769-1792. https://doi.org/10.3390/cancers6031769 DOI: https://doi.org/10.3390/cancers6031769

[42] C.L. Sommers, S.E. Heckford, J.M. Skerker, P. Worland, J.A. Torri, E.W. Thompson, S.W. Byers, E.P. Gelmann. Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Research 52 (1992) 5190-5197.

[43] I.A. Cree, P. Charlton. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17 (2017) 10. https://doi.org/10.1186/s12885-016-2999-1 DOI: https://doi.org/10.1186/s12885-016-2999-1

[44] A. Saber, T.J.N. Hiltermann, K. Kok, H.J.M. Groen. Resistance mechanisms after tyrosine kinase inhibitors afatinib and crizotinib in non-small cell lung cancer, a review of the literature. Critical Reviews in Oncology/Hematology 100 (2016) 107-116. https://doi.org/10.1016/j.critrevonc.2016.01.024 DOI: https://doi.org/10.1016/j.critrevonc.2016.01.024

[45] R.A. Ward, S. Fawell, N. Floc’h, V. Flemington, D. McKerrecher, P.D. Smith. Challenges and opportunities in cancer drug resistance. Chemical Reviews 121 (2020) 3297-3351. https://doi.org/10.1021/acs.chemrev.0c00383 DOI: https://doi.org/10.1021/acs.chemrev.0c00383

[46] B. Du, J.S. Shim. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21 (2016) 965. https://doi.org/10.3390/molecules21070965 DOI: https://doi.org/10.3390/molecules21070965

[47] F. Nurwidya, F. Takahashi, A. Murakami, K. Takahashi. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Research and Treatment 44 (2012) 151-156. https://doi.org/10.4143/crt.2012.44.3.151 DOI: https://doi.org/10.4143/crt.2012.44.3.151

[48] R.C. Bates, A.M. Mercurio. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biology & Therapy 4 (2005) 371-376. https://doi.org/10.4161/cbt.4.4.1655 DOI: https://doi.org/10.4161/cbt.4.4.1655

[49] X. Wang, H. Zhang, X. Chen. Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance 2 (2019) 141-160. https://doi.org/10.20517/cdr.2019.10 DOI: https://doi.org/10.20517/cdr.2019.10

[50] M.K. Asiedu, F.D. Beauchamp-Perez, J.N. Ingle, M.D. Behrens, D.C. Radisky, K.L. Knutson. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 33 (2014) 1316-1324. https://doi.org/10.1038/onc.2013.57 DOI: https://doi.org/10.1038/onc.2013.57

[51] M. Xie, L. Zhang, C. He, F. Xu, J. Liu, Z. Hu. Activation of Notch-1 enhances epithelial-mesenchymal transition in gefitinib-acquired resistant lung cancer cells. Journal of Cellular Biochemistry 113 (2012) 1501-1513. https://doi.org/10.1002/jcb.24019 DOI: https://doi.org/10.1002/jcb.24019

[52] P.B. Gupta, I. Pastushenko, A. Skibinski, C. Blanpain, C. Kuperwasser. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24 (2019) 65-78. https://doi.org/10.1016/j.stem.2018.11.011 DOI: https://doi.org/10.1016/j.stem.2018.11.011

[53] S. Jonckheere, J. Adams, D. De Groote, K. Campbell, G. Berx, S. Goossens. Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target. Cells Tissues Organs 211 (2022) 157-182. https://doi.org/10.1159/000512218 DOI: https://doi.org/10.1159/000512218

[54] M. Saxena, M.A. Stephens, H. Pathak, A. Rangarajan. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death & Disease 2 (2011) e179. https://doi.org/10.1038/cddis.2011.61 DOI: https://doi.org/10.1038/cddis.2011.61

[55] G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou. A step-by-step microRNA guide to cancer development and metastasis. Cell Oncology 40 (2017) 303-339. https://doi.org/10.1007/s13402-017-0341-9 DOI: https://doi.org/10.1007/s13402-017-0341-9

[56] S. Liu, M.T. Tetzlaff, R. Cui, X. Xu. miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. American Journal of Pathology 181 (2012) 1823-1835. https://doi.org/10.1016/j.ajpath.2012.07.009 DOI: https://doi.org/10.1016/j.ajpath.2012.07.009

[57] J. Hu, M. Qiu, F. Jiang, S. Zhang, X. Yang, J. Wang. MiR-145 regulates cancer stem-like properties and epithelial-to-mesenchymal transition in lung adenocarcinoma-initiating cells. Tumor Biology 35 (2014) 8953-8961. https://doi.org/10.1007/s13277-014-2158-8 DOI: https://doi.org/10.1007/s13277-014-2158-8

[58] K. Kitamura, M. Seike, T. Okano, K. Matsuda, A. Miyanaga, H. Mizutani. MiR-134/487b/655 cluster regulates TGF--induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Molecular Cancer Therapeutics 13 (2014) 444-453. https://doi.org/10.1158/1535-7163.MCT-13-0448 DOI: https://doi.org/10.1158/1535-7163.MCT-13-0448

[59] T. Soussi, K.G. Wiman. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12 (2007) 303-312. https://doi.org/10.1016/j.ccr.2007.10.001 DOI: https://doi.org/10.1016/j.ccr.2007.10.001

[60] T. Oikawa, Y. Otsuka, H. Sabe. p53-dependent and -independent epithelial integrity: beyond miRNAs and metabolic fluctuations. Cancers 10 (2018) 162. https://doi.org/10.3390/cancers10060162 DOI: https://doi.org/10.3390/cancers10060162

[61] P. Dong, M. Karaayvaz, N. Jia, M. Kaneuchi, J. Hamada, H. Watari. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32 (2013) 3286-3295. https://doi.org/10.1038/onc.2012.334 DOI: https://doi.org/10.1038/onc.2012.334

[62] C.-J. Chang, C.-H. Chao, W. Xia, J.-Y. Yang, Y. Xiong, C.-W. Li, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology 13 (2011) 317-323. https://doi.org/10.1038/ncb2173 DOI: https://doi.org/10.1038/ncb2173

[63] Z. Wang, Y. Jiang, D. Guan, J. Li, H. Yin, Y. Pan, et al. Critical roles of p53 in epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma cells. PLoS ONE 8 (2013) e72846. https://doi.org/10.1371/journal.pone.0072846 DOI: https://doi.org/10.1371/journal.pone.0072846

[64] P.A.J. Muller, K.H. Vousden. p53 mutations in cancer. Nature Cell Biology 15 (2013) 2-8. https://doi.org/10.1038/ncb2641 DOI: https://doi.org/10.1038/ncb2641

[65] X. Zhang, Q. Cheng, H. Yin, G. Yang. Regulation of autophagy and EMT by the interplay between p53 and RAS during cancer progression. International Journal of Oncology 51 (2017) 18-24. https://doi.org/10.3892/ijo.2017.4025 DOI: https://doi.org/10.3892/ijo.2017.4025

[66] T. Kim, A. Veronese, F. Pichiorri, T.J. Lee, Y.-J. Jeon, S. Volinia, et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. Journal of Experimental Medicine 208 (2011) 875-883. https://doi.org/10.1084/jem.20110235 DOI: https://doi.org/10.1084/jem.20110235

[67] H. Solomon, I. Kogan, V. Rotter. Mutant p53 hinges between epithelial-mesenchymal transition and cancer stem cells. ICST Transactions on Cancer Research (2016). https://doi.org/10.15761/ICST.1000278 DOI: https://doi.org/10.15761/ICST.1000278

[68] B. Zhu, Q.L. Zhang, J.W. Hua, W.L. Cheng, L.P. Qin. The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: A review. Journal of Ethnopharmacology 226 (2018) 143-167. https://doi.org/10.1016/j.jep.2018.08.023 DOI: https://doi.org/10.1016/j.jep.2018.08.023

[69] C. Bailly. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: antioxidant, anti-inflammatory and anticancer properties. European Journal of Pharmacology 891 (2021) 173735. https://doi.org/10.1016/j.ejphar.2020.173735 DOI: https://doi.org/10.1016/j.ejphar.2020.173735

[70] X. Fu, G. Chou, H.Y. Kwan, A.K. Tse, L. Zhao, T. Yuen. Inhibition of STAT3 signalling contributes to the antimelanoma action of atractylenolide II. Experimental Dermatology 23 (2014) 855-857. https://doi.org/10.1111/exd.12527 DOI: https://doi.org/10.1111/exd.12527

[71] Y. Ye, G.X. Chou, H. Wang, J.H. Chu, W. Fong, Z.L. Yu. Effects of sesquiterpenes isolated from largehead Atractylodes rhizome on growth, migration, and differentiation of B16 melanoma cells. Integrative Cancer Therapies 10 (2011) 92-100. https://doi.org/10.1177/1534735410378660 DOI: https://doi.org/10.1177/1534735410378660

[72] D. Tang, X. Xu, J. Ying, T. Xie, G. Cao. Transfer of metastatic traits via miR-200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I. Clinical and Translational Medicine 10 (2020) e139. https://doi.org/10.1002/ctm2.139 DOI: https://doi.org/10.1002/ctm2.139

[73] W. Yu, Z. Ren, X. Zhang, S. Xing, S. Tao, C. Liu, X. Gao, X. Qian, H. Yang. Structural characterization of polysaccharides from Dendrobium officinale and their effects on apoptosis of HeLa cell line. Molecules 23 (2018) 2484. https://doi.org/10.3390/molecules23102484 DOI: https://doi.org/10.3390/molecules23102484

[74] Y. Luo, Z. Ren, B. Du, S. Xing, S. Huang, Y. Li, J. Qian, H. Zhao, W. Zhang. Structure identification of vicenin II extracted from Dendrobium officinale and the reversal of TGF-1-induced epithelial-mesenchymal transition in lung adenocarcinoma cells through TGF-/Smad and PI3K/Akt/mTOR signaling pathways. Molecules 24 (2019) 144. https://doi.org/10.3390/molecules24010144 DOI: https://doi.org/10.3390/molecules24010144

[75] L. Yang, W. Jin, X. Tang, S. Zhang, R. Ma, D. Zhao, X. Wang, Y. Liu, J. Zheng. Ginseng-derived nanoparticles inhibit lung cancer cell epithelial mesenchymal transition by repressing pentose phosphate pathway activity. Frontiers in Oncology 12 (2022) 942020. https://doi.org/10.3389/fonc.2022.942020 DOI: https://doi.org/10.3389/fonc.2022.942020

[76] J.H. Kim, M. Kim, S.M. Yun, S. Lee, J.H. No, D.H. Suh, K. Kim, Y.B. Kim. Ginsenoside Rh2 induces apoptosis and inhibits epithelial-mesenchymal transition in HEC1A and Ishikawa endometrial cancer cells. Biomedicine & Pharmacotherapy 96 (2017) 871-876. https://doi.org/10.1016/j.biopha.2017.09.033 DOI: https://doi.org/10.1016/j.biopha.2017.09.033

[77] B.C. He, J.L. Gao, X. Luo, J. Luo, J. Shen, L. Wang, G. Yang, Y. Li, J. Wang. Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/-catenin signaling. International Journal of Oncology 38 (2011) 437-445. https://doi.org/10.1016/j.biopha.2017.11.092 DOI: https://doi.org/10.3892/ijo.2010.858

[78] J.H. Wang, J.F. Nao, M. Zhang, P. He. 20(S)-Ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumor Biology 35 (2014) 11985-11994. https://doi.org/10.1007/s13277-014-2497-5 DOI: https://doi.org/10.1007/s13277-014-2497-5

[79] Q.J. Chen, M.Z. Zhang, L.X. Wang. Ginsenoside Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells. Cellular Physiology and Biochemistry 26 (2011) 849-858. https://doi.org/10.1159/000323994 DOI: https://doi.org/10.1159/000323994

[80] T. Liu, L. Zhao, Y. Zhang, W. Chen, D. Liu, H. Hou, L. Sun, B. Zhu, T. Zhang. Ginsenoside 20(S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS ONE 9 (2014) e103887. https://doi.org/10.1371/journal.pone.0103887 DOI: https://doi.org/10.1371/journal.pone.0103887

[81] L. Tian, D. Shen, X. Li, X. Shan, X. Wang, Q. Yan, F. Chen, Q. Meng, J. Liu. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget 7 (2016) 1619-1632. https://doi.org/10.18632/oncotarget.6451 DOI: https://doi.org/10.18632/oncotarget.6451

[82] M.Y. Huang, X.M. Jiang, Y.L. Xu, L.W. Yuan, Y.C. Chen, G. Cui, Y. He, Y. Lu, L. Wang. Platycodin D triggers the extracellular release of programmed death ligand-1 in lung cancer cells. Food and Chemical Toxicology 131 (2019) 110537. https://doi.org/10.1016/j.fct.2019.05.045 DOI: https://doi.org/10.1016/j.fct.2019.05.045

[83] T. Li, X. Xu, Z. Tang, Y. Wang, C. Leung, D. Ma, D. Xie, H. Zhou, M. Wang. Platycodin D induces apoptosis and triggers ERK- and JNK-mediated autophagy in human hepatocellular carcinoma BEL-7402 cells. Acta Pharmacologica Sinica 36 (2015) 1503-1513. https://doi.org/10.1038/aps.2015.99 DOI: https://doi.org/10.1038/aps.2015.99

[84] Y. Peng, J.Y. Fan, J. Xiong, Y. Lou, Y. Zhu. miR-34a enhances the susceptibility of gastric cancer to platycodin D by targeting survivin. Pathobiology 86 (2019) 296-305. https://doi.org/10.1159/000502913 DOI: https://doi.org/10.1159/000502913

[85] J.J. Lu, D.Z. Lu, Y.F. Chen, Y.T. Dong, J.R. Zhang, T. Li, L. Wang, J. Zhou, H. Fang. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chinese Journal of Natural Medicines 13 (2015) 673-679. https://doi.org/10.1016/S1875-5364(15)30065-0 DOI: https://doi.org/10.1016/S1875-5364(15)30065-0

[86] D. Chen, T. Chen, Y. Guo, C. Wang, L. Dong, C. Lu. Platycodin D (PD) regulates LncRNA-XIST/miR-335 axis to slow down bladder cancer progression in vitro and in vivo. Experimental Cell Research 396 (2020) 112281. https://doi.org/10.1016/j.yexcr.2020.112281 DOI: https://doi.org/10.1016/j.yexcr.2020.112281

[87] S.Y. Kim, M.S. Shin, G.J. Kim, H. Kwon, M.J. Lee, A.R. Han, Y. Lim, T. Kim, E.K. Seo. Inhibition of A549 lung cancer cell migration and invasion by Ent-Caprolactin C via the suppression of transforming growth factor--induced epithelial-mesenchymal transition. Marine Drugs 19 (2021) 465. https://doi.org/10.3390/md19080465 DOI: https://doi.org/10.3390/md19080465

[88] M. Vasarri, E. Barletta, D. Degl’Innocenti. Marine migrastatics: a comprehensive 2022 update. Marine Drugs 20 (2022) 273. https://doi.org/10.3390/md20050273 DOI: https://doi.org/10.3390/md20050273

[89] O.S. Malyarenko, R.V. Usoltseva, N.M. Shevchenko, V.V. Isakov, T.N. Zvyagintseva, S.P. Ermakova. In vitro anticancer activity of the laminarans from Far Eastern brown seaweeds and their sulfated derivatives. Journal of Applied Phycology 29 (2017) 543-553. https://doi.org/10.1007/s10811-016-0915-3 DOI: https://doi.org/10.1007/s10811-016-0915-3

[90] O.S. Malyarenko, R.V. Usoltseva, T.N. Zvyagintseva, S.P. Ermakova. Laminaran from brown alga Dictyota dichotoma and its sulfated derivative as radioprotectors and radiosensitizers in melanoma therapy. Carbohydrate Polymers 206 (2019) 539-547. https://doi.org/10.1016/j.carbpol.2018.11.008 DOI: https://doi.org/10.1016/j.carbpol.2018.11.008

[91] J. Wu, H. Li, X. Wang, X. Zhang, W. Liu, Y. Wang, J. Zhang. Effect of polysaccharide from Undaria pinnatifida on proliferation, migration and apoptosis of breast cancer cell MCF7. International Journal of Biological Macromolecules 121 (2019) 734-742. https://doi.org/10.1016/j.ijbiomac.2018.10.086 DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.086

[92] M. Leri, M. Ramazzotti, M. Vasarri, S. Peri, E. Barletta, C. Pretti, C.M. Della Croce. Bioactive compounds from Posidonia oceanica (L.) Delile impair malignant cell migration through autophagy modulation. Marine Drugs 16 (2018) 137. https://doi.org/10.3390/md16040137 DOI: https://doi.org/10.3390/md16040137

[93] M. Vasarri, M. Leri, E. Barletta, C. Pretti, D. Degl’Innocenti. Posidonia oceanica (L.) Delile dampens cell migration of human neuroblastoma cells. Marine Drugs 19 (2021) 579. https://doi.org/10.3390/md19100579 DOI: https://doi.org/10.3390/md19100579

[94] V. Piazzini, M. Vasarri, D. Degl’Innocenti, A. Guastini, E. Barletta, M.C. Salvatici, L. Di Cesare Mannelli. Comparison of chitosan nanoparticles and soluplus micelles to optimize the bioactivity of Posidonia oceanica extract on human neuroblastoma cell migration. Pharmaceutics 11 (2019) 655. https://doi.org/10.3390/pharmaceutics11120655 DOI: https://doi.org/10.3390/pharmaceutics11120655

[95] A. Aufschnaiter, V. Kohler, S. Khalifa, A. Abd El-Wahed, M. Du, H. El-Seedi, H.R. El-Seedi, J. Xiao, T. Efferth. Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis: limitations and possibilities. Toxins 12 (2020) 66. https://doi.org/10.3390/toxins12020066 DOI: https://doi.org/10.3390/toxins12020066

[96] A. Khalil, B.H. Elesawy, T.M. Ali, O.M. Ahmed. Bee venom: from venom to drug. Molecules 26 (2021) 4941. https://doi.org/10.3390/molecules26164941 DOI: https://doi.org/10.3390/molecules26164941

[97] P. Dutta, R.K. Sahu, T. Dey, M.D. Lahkar, P. Manna, J. Kalita. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chemico-Biological Interactions 313 (2019) 108824. https://doi.org/10.1016/j.cbi.2019.108824 DOI: https://doi.org/10.1016/j.cbi.2019.108824

[98] S. Mirzaei, H.S. Fekri, F. Hashemi, K. Hushmandi, R. Mohammadinejad, M. Ashrafizadeh, A. Zarrabi, H. Khan, L. Thangavelu, S. Arora, G. Sethi. Venom peptides in cancer therapy: an updated review on cellular and molecular aspects. Pharmacological Research 164 (2021) 105327. https://doi.org/10.1016/j.phrs.2020.105327 DOI: https://doi.org/10.1016/j.phrs.2020.105327

[99] P. Shi, S. Xie, J. Yang, Y. Zhang, S. Han, S. Su, Y. Gao, M. Zhou, T. Chen, M. Xiang, C. Wang. Pharmacological effects and mechanisms of bee venom and its main components: recent progress and perspective. Frontiers in Pharmacology 13 (2022) 1001553. https://doi.org/10.3389/fphar.2022.1001553 DOI: https://doi.org/10.3389/fphar.2022.1001553

[100] F.A. Urra, R. Araya-Maturana. Targeting metastasis with snake toxins: molecular mechanisms. Toxins 9 (2017) 390. https://doi.org/10.3390/toxins9120390 DOI: https://doi.org/10.3390/toxins9120390

[101] R. Bhaskaran, C.C. Huang, D.K. Chang, C. Yu. Cardiotoxin III from the Taiwan cobra (Naja naja atra): determination of structure in solution and comparison with short neurotoxins. Journal of Molecular Biology 235 (1994) 1291-1301. https://doi.org/10.1006/jmbi.1994.1082 DOI: https://doi.org/10.1006/jmbi.1994.1082

[102] P.C. Tsai, C.Y. Hsieh, C.C. Chiu, C.K. Wang, L.S. Chang, S.R. Lin. Cardiotoxin III suppresses MDA-MB-231 cell metastasis through the inhibition of EGF/EGFR-mediated signaling pathway. Toxicon 60 (2012) 734-743. https://doi.org/10.1016/j.toxicon.2012.05.019 DOI: https://doi.org/10.1016/j.toxicon.2012.05.019

[103] P.C. Tsai, Y.S. Fu, L.S. Chang, S.R. Lin. Taiwan cobra cardiotoxin III suppresses EGF/EGFR-mediated epithelial-to-mesenchymal transition and invasion of human breast cancer MDA-MB-231 cells. Toxicon 111 (2016) 108-120. https://doi.org/10.1016/j.toxicon.2016.01.051 DOI: https://doi.org/10.1016/j.toxicon.2016.01.051

[104] M. Huang, S. Wu, Q. Hu, H. Wu, S. Wei, H. Xie, K. Sun, X. Li, L. Fang. Agkihpin, a novel SVAE may inhibit the migration and invasion of liver cancer cells associated with the inversion of EMT induced by Wnt/β-catenin signaling inhibition. Biochemical and Biophysical Research Communication 479 (2016) 283-289. https://doi.org/10.1016/j.bbrc.2016.09.060 DOI: https://doi.org/10.1016/j.bbrc.2016.09.060

[105] M. Brillard-Bourdet, V. Nguyên, M. Ferrer-Di Martino, F. Gauthier, T. Moreau. Purification and characterization of a new cystatin inhibitor from Taiwan cobra (Naja naja atra) venom. Biochemical Journal 331 (1998) 239-244. https://doi.org/10.1042/bj3310239 DOI: https://doi.org/10.1042/bj3310239

[106] N. Tang, Q. Xie, X. Wang, X. Li, Y. Chen, X. Lin, J. Tang, X. Liang. Inhibition of invasion and metastasis of MHCC97H cells by expression of snake venom cystatin through reduction of proteinases activity and epithelial-mesenchymal transition. Archives of Pharmacal Research 34 (2011) 781-789. https://doi.org/10.1007/s12272-011-0512-6 DOI: https://doi.org/10.1007/s12272-011-0512-6

[107] P. Kollár, J. Rajchard, Z. Balounová, J. Pazourek. Marine natural products: bryostatins in preclinical and clinical studies. Pharmaceutical Biology 52 (2014) 237-242. https://doi.org/10.3109/13880209.2013.804100 DOI: https://doi.org/10.3109/13880209.2013.804100

[108] R. Raghuvanshi, S.B. Bharate. Preclinical and Clinical Studies on Bryostatins, A Class of Marine-Derived Protein Kinase C Modulators: A Mini-Review. Current Topics in Medicinal Chemistry 20 (2020) 1124-1135. https://doi.org/10.2174/1568026620666200325110444 DOI: https://doi.org/10.2174/1568026620666200325110444

[109] A.E. Trindade-Silva, G.E. Lim-Fong, K.H. Sharp, M.G. Haygood. Bryostatins: biological context and biotechnological prospects. Current Opinion in Biotechnology 21 (2010) 834-842. https://doi.org/10.1016/j.copbio.2010.09.018 DOI: https://doi.org/10.1016/j.copbio.2010.09.018

[110] J. Kortmansky, G.K. Schwartz. Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Investigation 21 (2003) 924-936. https://doi.org/10.1081/CNV-120025095 DOI: https://doi.org/10.1081/CNV-120025095

[111] T. Kowalczyk, M. Staszewski, M. Markowicz-Piasecka, J. Sikora, C. Amaro, L. Picot, P. Sitarek. Anticancer Activity of the Marine-Derived Compound Bryostatin 1: Preclinical and Clinical Evaluation. International Journal of Molecular Sciences 26 (2025) 7765. https://doi.org/10.3390/ijms26167765 DOI: https://doi.org/10.3390/ijms26167765

[112] Y.J. Wu, S.H. Lin, Z.H. Din, J.H. Su, C.I. Liu. Sinulariolide Inhibits Gastric Cancer Cell Migration and Invasion through Downregulation of the EMT Process and Suppression of FAK/PI3K/AKT/mTOR and MAPKs Signaling Pathways. Marine Drugs 17 (2019) 668. https://doi.org/10.3390/md17120668 DOI: https://doi.org/10.3390/md17120668

[113] J.J. Lin, J.H. Su, C.C. Tsai, Y.J. Chen, M.H. Liao, Y.J. Wu. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways. Marine Drugs 12 (2014) 4783-4798. https://doi.org/10.3390/md12094783 DOI: https://doi.org/10.3390/md12094783

[114] T.C. Cheng, Z.H. Din, J.H. Su, Y.J. Wu, C.I. Liu. Sinulariolide Suppresses Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 and Urokinase through the PI3K/AKT/mTOR Signaling Pathway in Human Bladder Cancer Cells. Marine Drugs 15 (2017) 238. https://doi.org/10.3390/md15080238 DOI: https://doi.org/10.3390/md15080238

[115] M. Su, J. Zhu, L. Bai, Y. Cao, S. Wang. Exploring manzamine a: a promising anti-lung cancer agent from marine sponge Haliclona sp. Frontiers in Pharmacology 16 (2025) 1525210. https://doi.org/10.3389/fphar.2025.1525210 DOI: https://doi.org/10.3389/fphar.2025.1525210

[116] L.C. Lin, T.T. Kuo, H.Y. Chang, W.S. Liu, S.M. Hsia, T.C. Huang. Manzamine A Exerts Anticancer Activity against Human Colorectal Cancer Cells. Marine Drugs 16 (2018) 252. https://doi.org/10.3390/md16080252 DOI: https://doi.org/10.3390/md16080252

[117] D. Karan, S. Dubey, L. Pirisi, A. Nagel, I. Pina, Y.M. Choo, M.T. Hamann. The Marine Natural Product Manzamine A Inhibits Cervical Cancer by Targeting the SIX1 Protein. Journal of Natural Products 83 (2020) 286-295. https://doi.org/10.1021/acs.jnatprod.9b00577 DOI: https://doi.org/10.1021/acs.jnatprod.9b00577

[118] D.S. Dissanayake, D.P. Nagahawatta, J.S. Lee, Y.J. Jeon. Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications. Marine Drugs 22 (2024) 426. https://doi.org/10.3390/md22090426 DOI: https://doi.org/10.3390/md22090426

[119] R. Bai, T.L. Nguyen, J.C. Burnett, O. Atasoylu, M.H. Munro, G.R. Pettit, A.B. Smith, R. Gussio, E. Hamel. Interactions of halichondrin B and eribulin with tubulin. Journal of Chemical Information and Modeling 51 (2011) 1393-1404. https://doi.org/10.1021/ci200077t DOI: https://doi.org/10.1021/ci200077t

[120] Y. Funahashi, K. Okamoto, Y. Adachi, T. Semba, M. Uesugi, Y. Ozawa, O. Tohyama, T. Uehara, T. Kimura, H. Watanabe, M. Asano, S. Kawano, X. Tizon, P.J. McCracken, J. Matsui, K. Aoshima, K. Nomoto, Y. Oda. Eribulin mesylate reduces tumor microenvironment abnormality by vascular remodeling in preclinical human breast cancer models. Cancer Science 105 (2014) 1334-1342. https://doi.org/10.1111/cas.12488 DOI: https://doi.org/10.1111/cas.12488

[121] A.R. Carroll, B.R. Copp, R.A. Davis, R.A. Keyzers, M.R. Prinsep. Marine natural products. Natural Product Report 40 (2023) 275-325. https://doi.org/10.1039/D2NP00083K DOI: https://doi.org/10.1039/D2NP00083K

[122] F. Zhang, D.R. Braun, G.E. Ananiev, F.M. Hoffmann, I.W. Tsai, S.R. Rajski, T.S. Bugni. Biemamides A-E, Inhibitors of the TGF-β Pathway That Block the Epithelial to Mesenchymal Transition. Organic Letters 20 (2018) 5529-5532. https://doi.org/10.1021/acs.orglett.8b01871 DOI: https://doi.org/10.1021/acs.orglett.8b01871

[123] E. Turrini, F. Maffei, C. Fimognari. Ten Years of Research on Fucoidan and Cancer: Focus on Its Antiangiogenic and Antimetastatic Effects. Marine Drugs 21 (2023) 307. https://doi.org/10.3390/md21050307 DOI: https://doi.org/10.3390/md21050307

[124] Y. Lin, X. Qi, H. Liu, K. Xue, S. Xu, Z. Tian. The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations. Cancer Cell International 20 (2020) 154. https://doi.org/10.1186/s12935-020-01233-8 DOI: https://doi.org/10.1186/s12935-020-01233-8

[125] H.Y. Hsu, T.Y. Lin, Y.C. Wu, S.M. Tsao, P.A. Hwang, Y.W. Shih, J. Hsu. Fucoidan inhibition of lung cancer in vivo and in vitro : role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation. Oncotarget 5 (2014) 7870-7885. https://doi.org/10.18632/oncotarget.2317 DOI: https://doi.org/10.18632/oncotarget.2317

[126] S.I. Arriola Apelo, D.W. Lamming. Rapamycin: An InhibiTOR of Aging Emerges From the Soil of Easter Island. The Journals of Gerontology 71 (2016) 841-849. https://doi.org/10.1093/gerona/glw090 DOI: https://doi.org/10.1093/gerona/glw090

[127] V. Alves, I.B. de Andrade, D. Corrêa-Junior, I. Avellar-Moura, K. Passos, J. Soares, B. Pontes, M.A. Almeida, R. Almeida-Paes, S. Frases. Revealing the impact of Rapamycin on the virulence factors of the Candida haemulonii complex. Current Research in Microbial Sciences 7 (2024) 100247. https://doi.org/10.1016/j.crmicr.2024.100247 DOI: https://doi.org/10.1016/j.crmicr.2024.100247

[128] P. Wang, H. Zhang, K. Guo, C. Liu, S. Chen, B. Pu, S. Chen, T. Feng, H. Jiao, C. Gao. Rapamycin inhibits B16 melanoma cell viability invitro and invivo by inducing autophagy and inhibiting the mTOR/p70 S6k pathway. Oncology Letters 27 (2024) 140. https://doi.org/10.3892/ol.2024.14273 DOI: https://doi.org/10.3892/ol.2024.14273

[129] A. Kwasnicki, D. Jeevan, A. Braun, R. Murali, M. Jhanwar-Uniyal. Involvement of mTOR signaling pathways in regulating growth and dissemination of metastatic brain tumors via EMT. Anticancer Research 35 (2015) 689-696.

[130] D. Mehta, K. Rajput, D. Jain, A. Bajaj, U. Dasgupta. Unveiling the Role of Mechanistic Target of Rapamycin Kinase (MTOR) Signaling in Cancer Progression and the Emergence of MTOR Inhibitors as Therapeutic Strategies. ACS Pharmacology and Translational Science 7 (2024) 3758-3779. https://doi.org/10.1021/acsptsci.4c00530 DOI: https://doi.org/10.1021/acsptsci.4c00530

[131] K. Radhakrishnan, L. Truong, C.L. Carmichael. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Frontiers in Immunology 14 (2023) 1207360. https://doi.org/10.3389/fimmu.2023.1207360 DOI: https://doi.org/10.3389/fimmu.2023.1207360

[132] F. Tolue Ghasaban, M. Ghanei, R.A. Mahmoudian, N. Taghehchian, M.R. Abbaszadegan, M. Moghbeli. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 10 (2024) e30599. https://doi.org/10.1016/j.heliyon.2024.e30599 DOI: https://doi.org/10.1016/j.heliyon.2024.e30599

[133] S.E. Parfenyev, A.A. Daks, O.Y. Shuvalov, O.A. Fedorova, N.B. Pestov, T.V. Korneenko, N.A. Barlev. Dualistic role of ZEB1 and ZEB2 in tumor progression. Biology Direct 20 (2025) 32. https://doi.org/10.1186/s13062-025-00604-3 DOI: https://doi.org/10.1186/s13062-025-00604-3

[134] T. Tan, P. Shi, M.N. Abbas, Y. Wang, J. Xu, Y. Chen, H. Cui. Epigenetic modification regulates tumor progression and metastasis through EMT (Review). International Journal of Oncology 60 (2022) 70. https://doi.org/10.3892/ijo.2022.5360 DOI: https://doi.org/10.3892/ijo.2022.5360

[135] E. Galle, B. Thienpont, S. Cappuyns, T. Venken, P. Busschaert, M. Van Haele, E. Van Cutsem, T. Roskams, J. van Pelt, C. Verslype, J. Dekervel, D. Lambrechts. DNA methylation-driven EMT is a common mechanism of resistance to various therapeutic agents in cancer. Clinical Epigenetics 12 (2020) 27. https://doi.org/10.1186/s13148-020-0821-z DOI: https://doi.org/10.1186/s13148-020-0821-z

[136] A.O. Giarratana, C.M. Prendergast, M.M. Salvatore, K.M. Capaccione. TGF-b signaling: critical nexus of fibrogenesis and cancer. Journal of Translational Medicine 22 (2024) 594. https://doi.org/10.1186/s12967-024-05411-4 DOI: https://doi.org/10.1186/s12967-024-05411-4

[137] H. Jing, Y. Gao, L. Jing, H. Yang, S. Liu. Recent advances in therapeutic use of transforming growth factor-beta inhibitors in cancer and fibrosis. Frontiers in Oncology 15 (2025) 1489701. https://doi.org/10.3389/fonc.2025.1489701 DOI: https://doi.org/10.3389/fonc.2025.1489701

[138] F. Yu, C. Yu, F. Li, Y. Zuo, Y. Wang, L. Yao, C. Wu, C. Wang, L. Ye. Wnt/b-catenin signaling in cancers and targeted therapies. Signal Transduction and Targeted Therapy 6 (2021) 307. https://doi.org/10.1038/s41392-021-00701-5 DOI: https://doi.org/10.1038/s41392-021-00701-5

[139] M.E. Poh, C.K. Liam, P. Rajadurai, C.S. Chai. Epithelial-to-mesenchymal transition (EMT) causing acquired resistance to afatinib in a patient with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. Journal of Thoracic Disease 10 (2018) E560-E563. https://doi.org/10.21037/jtd.2018.06.122 DOI: https://doi.org/10.21037/jtd.2018.06.122

[140] C. Song, J. Zhang, C. Xu, M. Gao, N. Li, Q. Geng. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. International Journal of Biological Sciences 19 (2023) 5089-5103. https://doi.org/10.7150/ijbs.87334 DOI: https://doi.org/10.7150/ijbs.87334

[141] M. Saitoh. Transcriptional regulation of EMT transcription factors in cancer. Seminars in Cancer Biology 97 (2023) 21-29. https://doi.org/10.1016/j.semcancer.2023.10.001 DOI: https://doi.org/10.1016/j.semcancer.2023.10.001

[142] R. Mohammadinejad, A. Biagioni, G. Arunkumar, R. Shapiro, K.C. Chang, M. Sedeeq, A. Taiyab, M. Hashemabadi, A. Pardakhty, A. Mandegary, J.P. Thiery, A.R. Aref, I. Azimi. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cellular and Molecular Life Sciences 77 (2020) 2701-2722. https://doi.org/10.1007/s00018-020-03449-3 DOI: https://doi.org/10.1007/s00018-020-03449-3

[143] I. Garrido-Cano, A. Adam-Artigues, A. Lameirinhas, J.F. Blandez, V. Candela-Noguera, A. Lluch, B. Bermejo, F. Sancenón, J.M. Cejalvo, R. Martínez-Máñez, P. Eroles. Delivery of miR-200c-3p Using Tumor-Targeted Mesoporous Silica Nanoparticles for Breast Cancer Therapy. ACS Applied Materials & Interfaces 15 (2023) 38323-38334. https://doi.org/10.1021/acsami.3c07541 DOI: https://doi.org/10.1021/acsami.3c07541

[144] P.N. Gollavilli, B. Parma, A. Siddiqui, H. Yang, V. Ramesh, F. Napoli, A. Schwab, R. Natesan, D. Mielenz, I.A. Asangani, T. Brabletz, C. Pilarsky, P. Ceppi. The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter. Oncogene 40 (2021) 2309-2322. https://doi.org/10.1038/s41388-021-01708-6 DOI: https://doi.org/10.1038/s41388-021-01708-6

[145] S.O. Imodoye, K.A. Adedokun. EMT-induced immune evasion: connecting the dots from mechanisms to therapy. Clinical and Experimental Medicine 23 (2023) 4265-4287. https://doi.org/10.1007/s10238-023-01229-4 DOI: https://doi.org/10.1007/s10238-023-01229-4

Comments (0)

No login
gif