Prediction of metabolism and solubility of tablet-form drugs according to the biopharmaceutical drug disposition classification system

[1] L.Z. Benet. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. Journal of Pharmaceutical Sciences 102 (2013) 34-42. https://doi.org/10.1002/jps.23359 DOI: https://doi.org/10.1002/jps.23359

[2] T.T. Tran, H. Tayara, K.T. Chong. Artificial intelligence in drug metabolism and excretion prediction: recent advances, challenges, and future perspectives. Pharmaceutics 15 (2023) 1260. https://doi.org/10.3390/pharmaceutics15041260 DOI: https://doi.org/10.3390/pharmaceutics15041260

[3] C.A. Bergström, P. Larsson. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. International journal of pharmaceutics 540 (2018) 185-193. https://doi.org/10.1016/j.ijpharm.2018.01.044 DOI: https://doi.org/10.1016/j.ijpharm.2018.01.044

[4] C.Y. Wu, L.Z. Benet. Predicting drug disposition via application of BDDCS: The Biopharmaceutics Drug Disposition Classification System. Pharmaceutical Sciences 22 (2005) 11-23. https://doi.org/10.1007/s11095-004-9004-4 DOI: https://doi.org/10.1007/s11095-004-9004-4

[5] A. Charalabidis, M. Sfouni, C. Bergström, P. Macheras. The biopharmaceutics classification system (BCS) and the biopharmaceutics drug disposition classification system (BDDCS): beyond guidelines. International Journal of Pharmaceutics 566 (2019) 264-281. https://doi.org/10.1016/j.ijpharm.2019.05.04 DOI: https://doi.org/10.1016/j.ijpharm.2019.05.041

[6] C.M. Bowman, L.Z. Benet. Hepatic clearance predictions from in vitro–in vivo extrapolation and the biopharmaceutics drug disposition classification system. Drug Metabolism and Disposition 44 (2016) 1731-1735. https://doi.org/10.1124/dmd.116.071514 DOI: https://doi.org/10.1124/dmd.116.071514

[7] R. Cristofoletti, C. Chiann, J.B. Dressman, S. Storpirtis. A comparative analysis of biopharmaceutics classification system and biopharmaceutics drug disposition classification system: a cross-sectional survey with 500 bioequivalence studies. Journal of Pharmaceutical Sciences 102 (2013) 3136-3144. https://doi.org/10.1002/jps.23515 DOI: https://doi.org/10.1002/jps.23515

[8] A. Ashrafi, K. Teimouri, F. Aghazadeh, A. Shayanfar. Neural Network Models for Predicting Solubility and Metabolism Class of Drugs in the Biopharmaceutics Drug Disposition Classification System (BDDCS). European Journal of Drug Metabolism and Pharmacokinetics 49 (2024) 1-6. https://doi.org/10.1007/s13318-023-00861-5 DOI: https://doi.org/10.1007/s13318-023-00861-5

[9] E. Ostertagova, O. Ostertag, J. Kováč. Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials 611 (2014) 115-120. https://doi.org/10.4028/www.scientific.net/AMM.611.115 DOI: https://doi.org/10.4028/www.scientific.net/AMM.611.115

[10] T.V. Hecke. Power study of anova versus Kruskal-Wallis test. Journal of Statistics and Management Systems 15 (2012) 241-247. https://doi.org/10.1080/09720510.2012.10701623 DOI: https://doi.org/10.1080/09720510.2012.10701623

[11] N.M. Razali, Y.B. Wah. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and Analytics 2 (2011) 21. https://www.nbi.dk/~petersen/Teaching/Stat2017/Power_Comparisons_of_Shapiro-Wilk_Kolmogorov-Smirn.pdf

[12] U. Michelucci. Skewness, Kurtosis, and Modality. In Statistics for Scientists: A Concise Guide for Data-driven Research, Cham: Springer Nature, Switzerland, 2025, p. 95-108. https://doi.org/10.1007/978-3-031-78147-6_9 DOI: https://doi.org/10.1007/978-3-031-78147-6_9

[13] D.F. Specht. Probabilistic neural networks. Neural Networks 3 (1990) 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q DOI: https://doi.org/10.1016/0893-6080(90)90049-Q

[14] Y. Pushkarova, G. Zaitseva, A. Kaliuzhenko. 13th International conference on advanced computer information technologies, Classification of residuals by risk assessment using chemometric methods, Wrocław, Poland, 2023, p. 562-565. https://doi.org/10.1109/ACIT58437.2023.10275405 DOI: https://doi.org/10.1109/ACIT58437.2023.10275405

[15] J.N. Miller, J.C. Miller. Statistics and Chemometrics for Analytical Chemistry, Pearson, Harlow, England, 2010, p. 268. ISBN: 978-0-273-73042-2

Comments (0)

No login
gif