Electrochemical sensing and quantification of theobromine in cocoa products at polyvaline functionalized graphite paste sensor electrode

[1] M. Zhang, H. Zhang, L. Jia, Y. Zhang, R. Qin, S. Xu, Y. Mei. Health benefits and mechanisms of theobromine. Journal of Functional Foods 115 (2024) 106126. https://doi.org/10.1016/j.jff.2024.106126 DOI: https://doi.org/10.1016/j.jff.2024.106126

[2] M.S. Baliga, A. Saxena, K. Kaur, F. Kalekhan, A. Chacko, P. Venkatesh, R. Fayad, Polyphenols in the Prevention of Ulcerative Colitis: Past, Present and Future, in Polyphenols in Human Health and Disease, R.R. Watson, V.R. Preedy, S. Zibadi Eds., Academic Press, 2013, p. 655-663. https://doi.org/10.1016/B978-0-12-398456-2.00050-5 DOI: https://doi.org/10.1016/B978-0-12-398456-2.00050-5

[3] H. Ashihara, H. Sano, A. Crozier. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69 (2008) 841-856. https://doi.org/10.1016/j.phytochem.2007.10.029 DOI: https://doi.org/10.1016/j.phytochem.2007.10.029

[4] P.M.P. Santos, J.P. Telo, J.S.C. Vieira. Structure and redox properties of radicals derived from one-electron oxidized methylxanthines. Redox Report 13 (2008) 123-133. https://doi.org/10.1179/135100008X259231 DOI: https://doi.org/10.1179/135100008X259231

[5] S. Zhang, K.K.H. Lam, J.H. Wan, C.W. Yip, H.K.-H. Liu, et al. Dietary phytochemical approaches to stem cell regulation. Journal of Functional Foods 66 (2020) 1756-4646. https://doi.org/10.1016/j.jff.2020.103822 DOI: https://doi.org/10.1016/j.jff.2020.103822

[6] S. Otimenyin, Herbal biomolecules acting on central nervous system, in Herbal Biomolecules in Healthcare Applications, S. C. Mandal, A. K. Nayak, A. K. Dhara, Ed(s)., Academic Press, 2022, p. 475-523. https://doi.org/10.1016/B978-0-323-85852-6.00030-5 DOI: https://doi.org/10.1016/B978-0-323-85852-6.00030-5

[7] I.A. Carbajal-Valenzuela, N.M. Apolonio–Hernandez, D.V. Gutierrez-Chavez, B. González-Arias, A. Jimenez-Hernandez et al. Biological macromolecules as nutraceuticals, in Biological Macromolecules, Elsevier Inc, 2021, p. 5-47. http://doi.org/10.1016/B978-0-323-85759-8.00001-4 DOI: https://doi.org/10.1016/B978-0-323-85759-8.00001-4

[8] Á.L. Santana, G.A. Macedo. Health and technological aspects of methylxanthines and polyphenols from guarana: A review. Journal of Functional Foods 47 (2018) 457-468. https://doi.org/10.1016/j.jff.2018.05.048 DOI: https://doi.org/10.1016/j.jff.2018.05.048

[9] I.H. Eissa, R.G. Yousef, E.B. Elkaeed, A.A. Alsfouk, D.Z. Husein, I. M. Ibrahim, M.S. Alesawy, H. Elkady, A.M. Metwaly. Anticancer derivative of the natural alkaloid, theobromine, inhibiting EGFR protein: Computer-aided drug discovery approach. PLoS One 18 (2023) e0282586. https://doi.org/10.1371/journal.pone.0282586 DOI: https://doi.org/10.1371/journal.pone.0282586

[10] E. Martínez-Pinilla, A. Oñatibia-Astibia, R. Franco. The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology 6 (2015) 30. https://doi.org/10.3389/fphar.2015.00030 DOI: https://doi.org/10.3389/fphar.2015.00030

[11] F. Finlay, S. Guiton. Chocolate poisoning. BMJ Publishing Group 331 (2005) 633. https://doi.org/10.1136/bmj.331.7517.633 DOI: https://doi.org/10.1136/bmj.331.7517.633

[12] H. J. Smit, Theobromine and the Pharmacology of Cocoa, in Methylxanthines. Handbook of Experimental Pharmacology, Springer, Heidelberg, Berlin, 2011. https://doi.org/10.1007/978-3-642-13443-2_7. DOI: https://doi.org/10.1007/978-3-642-13443-2_7

[13] S. Rajendrachari, N. Basavegowda, V.M. Adimule, B. Avar, P. Somu, R.M. Saravana Kumar, K.H. Baek. Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques. Biosensors 12 (2022) 1173. https://doi.org/10.3390/bios12121173 DOI: https://doi.org/10.3390/bios12121173

[14] M.R. Brunetto, L. Gutiérrez, Y. Delgado, M. Gallignani, A. Zambrano, A. Gómez, G. Ramos, C. Romero. Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chemistry 100 (2007) 459-467. https://doi.org/10.1016/j.foodchem.2005.10.007 DOI: https://doi.org/10.1016/j.foodchem.2005.10.007

[15] A.G. Caudle, Y. Gu, L.N Bell. Improved analysis of theobromine and caffeine in chocolate food products formulated with cocoa powder. Food Research International 34 (2001) 599-603. https://doi.org/10.1016/s0963-9969(01)00077-1 DOI: https://doi.org/10.1016/S0963-9969(01)00077-1

[16] W. J. Hurst, K.P. Snyder, R.A. Martin. Use of microbore high-performance liquid chromatography for the determination of caffeine, theobromine and theophylline in cocoa. Journal of Chromatography A 318 (1985) 408-411. https://doi.org/10.1016/s0021-9673(01)90707-1 DOI: https://doi.org/10.1016/S0021-9673(01)90707-1

[17] Q. Chen, J. Wang. Simultaneous determination of artificial sweeteners, preservatives, caffeine, theobromine and theophylline in food and pharmaceutical preparations by ion chromatography. Journal of Chromatography A 937 (2001) 57–64. https://doi.org/10.1016/s0021-9673(01)01306-1 DOI: https://doi.org/10.1016/S0021-9673(01)01306-1

[18] E. S. Pour, H. Beitollahi. Novel electrochemical sensing platform for caffeine using three dimensional NiO nanowrinkles modified glassy carbon electrode. Eurasian Chemical Communications 3 (2021) 551-558. https://doi.org/10.22034/ecc.2021.287723.1181

[19] N. Alyamni, J. L. Abot, A. G. Zestos. Perspective—Advances in Voltammetric Methods for the Measurement of Biomolecules. ECS Sensors Plus 3 (2024). https://doi.org/10.1149/2754-2726/ad3c4f DOI: https://doi.org/10.1149/2754-2726/ad3c4f

[20] M. A. Azam, M. Mupit, Carbon nanomaterial-based sensor: Synthesis and characterization, in Carbon Nanomaterials-Based Sensors, J. G. Manjunatha, C. M. Hussain, Ed(s)., Elsevier, 2022, p. 15-28. https://doi.org/10.1016/B978-0-323-91174-0.00015-9. DOI: https://doi.org/10.1016/B978-0-323-91174-0.00015-9

[21] F.R. Simões, M.G. Xavier, Electrochemical Sensors, In Micro and Nano Technologies, Nanoscience and its Applications, A. L. Da Róz, M. Ferreira, F. L. Leite, O. N. Oliveira, Ed(s)., William Andrew Publishing, 2017, p. 155-178, https://doi.org/10.1016/B978-0-323-49780-0.00006-5. DOI: https://doi.org/10.1016/B978-0-323-49780-0.00006-5

[22] P. A. Pushpanjali, J. G. Manjunatha, N. Hareesha. An overview of recent developments of carbon-based sensors for the analysis of drug molecules: Review. Journal of Electrochemical Science and Engineering 11 (2021) 161-177. https://doi.org/10.5599/jese.999 DOI: https://doi.org/10.5599/jese.999

[23] K. P. R. Castro, R. N. P. Colombo, R.M. Iost, B. G. R da Silva, F. N. Crespilho. Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Analytical and Bioanalytical Chemistry 415 (2023) 3879-3895. https://doi.org/10.1007/s00216-023-04578-x DOI: https://doi.org/10.1007/s00216-023-04578-x

[24] H. Wang, C. Liu, B. Li, A. Liu, Y. Shen, M. Zhang, K. Ji, X. Mao, R. Sun, F. Zhou. Advances in Carbon-Based Resistance Strain Sensors. ACS Applied Electronic Materials 5 (2023) 674-689. https://doi.org/10.1021/acsaelm.2c01375 DOI: https://doi.org/10.1021/acsaelm.2c01375

[25] B.B. Berkes, A.S. Bandarenka, G. Inzelt. Electropolymerization: Further Insight into the Formation of Conducting Polyindole Thin Films. The Journal of Physical Chemistry C 119 (2015) 1996-2003. https://doi.org/10.1021/jp512208s DOI: https://doi.org/10.1021/jp512208s

[26] T.A. Sonia, C.P. Sharma, Experimental techniques involved in the development of oral insulin carriers, in Oral Delivery of Insulin, T. A. Sonia, C. P. Sharma, Ed(s)., Woodhead Publishing, 2014, p.169-217. https://doi.org/10.1533/9781908818683.169. DOI: https://doi.org/10.1533/9781908818683.169

[27] B. Rezaei, N. Irannejad. Electrochemical detection techniques in biosensor applications, in Electrochemical Biosensors, 2019, p. 11-43, https://doi:10.1016/B978-0-12-816491-4.00002-4. DOI: https://doi.org/10.1016/B978-0-12-816491-4.00002-4

[28] G. Tigari, Z. Yhobu, S. Budagumpi, R.S. Keri. Phloroglucinol/activated carbon composite/multiwalled carbon nanotubes modified glassy carbon electrode for electrochemical quantification of caffeic acid. Inorganic Chemistry Communications 158 (2023) 111593. https://doi.org/10.1016/j.inoche.2023.111593 DOI: https://doi.org/10.1016/j.inoche.2023.111593

[29] B.M. Sharmila, J.G. Manjunatha, K.P. Moulya, S.M. Osman, S. Patra. A surface-modified graphene– carbon-based composite sensor for the voltammetric assessment of pyridoxine in food and pharmaceutical samples. Journal of Taibah University for Science 18 (2024) 2359209. https://doi.org/10.1080/16583655.2024.2359209 DOI: https://doi.org/10.1080/16583655.2024.2359209

[30] S. Agrahari, A.K. Singh, R.K. Gautam, I. Tiwari. Voltammetric analysis of epinephrine using glassy carbon electrode modified with nanocomposite prepared from Co Nd bimetallic nanoparticles, alumina nanoparticles and functionalized multiwalled carbon nanotubes. Environmental Science and Pollution Research 30 (2023) 124866-124883. https://doi.org/10.1007/s11356-022-23660-y DOI: https://doi.org/10.1007/s11356-022-23660-y

[31] N. Jaiswal, I. Tiwari, C.W. Foster, C.E. Banks. Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO2 decorated Graphene oxide nanocomposite screen-printed electrodes. Electrochimica Acta 227 (2017) 255-266. https://doi.org/10.1016/j.electacta.2017.01.007 DOI: https://doi.org/10.1016/j.electacta.2017.01.007

[32] L. Švorc, M. Haššo, O. Sarakhman, K. Kianičková, D.M. Stanković, P. Otřísal. A progressive electrochemical sensor for food quality control: Reliable determination of theobromine in chocolate products using a miniaturized boron-doped diamond electrode. Microchemical Journal 142 (2018) 297-304. https://doi.org/10.1016/j.microc.2018.07.007 DOI: https://doi.org/10.1016/j.microc.2018.07.007

[33] N.A. Nia, M.M. Foroughi, S. Jahani. Simultaneous determination of theobromine, theophylline, and caffeine using a modified electrode with petal-like MnO2 nanostructure. Talanta 222 (2021) 121563. https://doi.org/10.1016/j.talanta.2020.121563 DOI: https://doi.org/10.1016/j.talanta.2020.121563

[34] P.C.G. Júnior, V. Bezerra dos Santos, A.S. Lopes, J.P. Iúdice de Souza, J.R. Souza Pina, G.C.A. Chagas Júnior, P.S.B. Marinho. Determination of theobromine and caffeine in fermented and unfermented Amazonian cocoa (Theobroma cacao L.) beans using square wave voltammetry after chromatographic separation. Food Control 108 (2019) 106887. https://doi.org/10.1016/j.foodcont.2019.106887 DOI: https://doi.org/10.1016/j.foodcont.2019.106887

[35] T.T.K. Nguyen, A.T. Pham, H.T. Luu, G.T.H. Le, H.H. Do, G.M.H. Dang, T. Thi. Simultaneous Determination of Caffeine, Theobromine and Theophylline in Tea by Differential Pulse Adsorptive Stripping Voltammetry Combined with Chemometrics. Analytical and Bioanalytical Electrochemistry 16 (2024) 1046-1059. https://www.doi.org/10.22034/abec.2024.719407

[36] L.S. de Azevedo, A.S. Castro, A. Chedid, M.F. De Oliveira. Chemically modified carbon electrode for voltammetric analysis of theobromine. Current Topics in Analytical Chemistry 15 (2023) 53-68. http://www.researchtrends.net/tia/abstract.asp?in=0&vn=15&tid=30&aid=7312&pub=2023&type=3

[37] Y. Peng, W. Zhang, J. Chang, Y. Huang, L. Chen, H. Deng, Z. Huang, Y. Wen. A Simple and Sensitive Method for the Voltammetric Analysis of Theobromine in Food Samples Using Nanobiocomposite Sensor. Food Analytical Methods 10 (2017) 3375-3384. https://www.doi.org/10.1007/s12161-017-0867-5 DOI: https://doi.org/10.1007/s12161-017-0867-5

[38] M. Haššo, I. Matúšková, L. Švorc. Easy, rapid and high-throughput analytical sensing platform for theobromine quantification in chocolate and cocoa products based on batch injection analysis with amperometric detection. Journal of Food Composition and Analysis 115 (2022) 105035. https://doi.org/10.1016/j.jfca.2022.105035 DOI: https://doi.org/10.1016/j.jfca.2022.105035

Comments (0)

No login
gif