A simple UiO-66-NH2@MWCNTs based electrochemical sensor for the sensitive detection of metronidazole

[1] M. Cazzola, M.G. Matera, P.Noschese. Parenteral Antibiotic Therapy in the Treatment of Lower Respiratory Tract Infections. Strategies to Minimize the Development of Antibiotic Resistance. Pulmonary Pharmacology & Therapeutics 13(6) (2000) 249-256. https://doi.org/10.1006/pupt.2000.0253 DOI: https://doi.org/10.1006/pupt.2000.0253

[2] A. Fournier, P. Eggimann, O. Pantet, J.L. Pagani, E. Dupuis-Lozeron, A. Pannatier, Y.A. Que. Impact of real-time therapeutic drug monitoring on the prescription of antibiotics in burn patients requiring admission to the intensive care unit. Antimicrobial Agents and Chemotherapy 62(3) (2018). https://doi.org/10.1128/aac.01818-17 DOI: https://doi.org/10.1128/AAC.01818-17

[3] D. Horn, C. Klaas, M. Fobker, R. Köck, C. Lanckohr. Therapeutic drug monitoring of antibiotics in critically ill patients. Handbook of Analytical Separations 7 (2020) 169-183. https://doi.org/10.1016/B978-0-444-64066-6.00008-3 DOI: https://doi.org/10.1016/B978-0-444-64066-6.00008-3

[4] J.A. Roberts, R. Norris, D.L. Paterson, J.H. Martin. Therapeutic drug monitoring of antimicrobials. British Journal of Clinical Pharmacology 73(1) (2012) 27-36. https://doi.org/10.1111/j.1365-2125.2011.04080.x DOI: https://doi.org/10.1111/j.1365-2125.2011.04080.x

[5] [5] J.S. Kang, M.H. Lee. Overview of therapeutic drug monitoring. The Korean Journal of Internal Medicine 24(1) (2009) 1. https://doi.org/10.3904/kjim.2009.24.1.1 DOI: https://doi.org/10.3904/kjim.2009.24.1.1

[6] A. Pollap, J. Kochana. Electrochemical immunosensors for antibiotic detection. Biosensors 9(2) (2019) 61. https://doi.org/10.3390/bios9020061 DOI: https://doi.org/10.3390/bios9020061

[7] M. Jacobs, V.J. Nagaraj, T. Mertz, A.P. Selvam, T. Ngo, S. Prasad. An electrochemical sensor for the detection of antibiotic, Analytical Methods 5 (2013) 4325-4329. http://dx.doi.org/10.1039/c3ay40994e DOI: https://doi.org/10.1039/c3ay40994e

[8] H.S. Stevenson, S.S. Shetty, N.J. Thomas, V.N. Dhamu, A. Bhide, S. Prasad. Ultrasensitive and rapid-response sensor for the electrochemical detection of antibiotic residues within meat samples. ACS Omega 4(4) (2019) 6324-6330. https://doi.org/10.1021/acsomega.8b03534 DOI: https://doi.org/10.1021/acsomega.8b03534

[9] M. Elfiky, N. Salahuddin, A. Hassanein, A. Matsuda, T. Hattori. Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchemical Journal 146 (2019) 170-177. https://doi.org/10.1016/j.microc.2018.12.034 DOI: https://doi.org/10.1016/j.microc.2018.12.034

[10] A. Zhang, C.M. Lieber. Nano-bioelectronics. Chemical Reviews 116(1) (2016) 215-257. https://doi.org/10.1021/acs.chemrev.5b00608 DOI: https://doi.org/10.1021/acs.chemrev.5b00608

[11] H. Qi, L. Qiu, X. Zhang, T. Yi, J. Jing, R. Sami, S.F. Alanazi, Z. Alqahtani, M.D. Aljabri, M.M. Rahman. Novel N-doped carbon dots derived from citric acid and urea: fluorescent sensing for determination of metronidazole and cytotoxicity studies. RSC Advances 13 (2023) 2663-2671. https://doi.org/10.1039/D2RA07150A DOI: https://doi.org/10.1039/D2RA07150A

[12] M.T. Jafari, B. Rezaei, B. Zaker. Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples. Analytical Chemistry 81 (2009) 3585-3591. https://doi.org/10.1021/ac802557t DOI: https://doi.org/10.1021/ac802557t

[13] D. Matmour, N. Hamoum, K.F.E. Hassam, Y. Merad, N.H. Ziani. Analysis of seven drug related impurities in six samples of metronidazole API by high performance liquid chromatography. Journal of Trace Elements and Minerals 3 (2023) 100048. https://doi.org/10.1016/j.jtemin.2023.100048 DOI: https://doi.org/10.1016/j.jtemin.2023.100048

[14] M.A. Abedalwafa, Y. Li, C. Ni, G. Yang, L. Wang. Non-enzymatic colorimetric sensor strip based on melamine-functionalized gold nanoparticles assembled on polyamide nanofiber membranes for the detection of metronidazole. Analytical Methods 11 (2019) 3706-3713. https://doi.org/10.1039/C9AY01114E DOI: https://doi.org/10.1039/C9AY01114E

[15] L. Hou, Q. Li, J. Li, D. Yang, Y. Yang. Cu,Fe,B/Cur-CDs with peroxidase- and ascorbic acid oxidase-like catalytic activity for dual-signal fluorescence sensing of metronidazole. Food Chemistry 493 (2025) 145757. https://doi.org/10.1016/j.foodchem.2025.145757 DOI: https://doi.org/10.1016/j.foodchem.2025.145757

[16] Y.H. Shishavan, M. Amjadi. A new enhanced chemiluminescence reaction based on polymer dots for the determination of metronidazole. Spectrochimica Acta A 260 (2021) 119992. https://doi.org/10.1016/j.saa.2021.119992 DOI: https://doi.org/10.1016/j.saa.2021.119992

[17] S. Zhang, S. Yu, X. Wang, Y. Zhang, Z. Yue, C. Li, Y. Ma. A novel electrochemical sensor for the detection of metronidazole in honey using the g-C3N4/MnO2/ZnO modified electrode. Journal of Food Composition and Analysis 127 (2024) 105992. https://doi.org/10.1016/j.jfca.2024.105992 DOI: https://doi.org/10.1016/j.jfca.2024.105992

[18] E. Delnavaz, K. Asadpour-Zeynali. Cobalt oxide nanoparticles electrodeposited on glassy carbon electrode for metronidazole determination. Results in Chemistry 7 (2024) 101321. https://doi.org/10.1016/j.rechem.2024.101321 DOI: https://doi.org/10.1016/j.rechem.2024.101321

[19] S. Nak-on, T. Tejangkura, W. Siangproh, T. Chontananarth. Application of electrochemical LAMP-MB signal evaluation using screen-printed graphene electrodes for quantitative detection of paramphistome egg DNA in faeces sample. Veterinary Parasitology 339 (2025) 110570. https://doi.org/10.1016/j.vetpar.2025.110570 DOI: https://doi.org/10.1016/j.vetpar.2025.110570

[20] M. Sher, A. Faheem, W. Asghar, S. Cinti. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. TrAC Trends in Analytical Chemistry 143 (2021) 116374. https://doi.org/10.1016/j.trac.2021.116374 DOI: https://doi.org/10.1016/j.trac.2021.116374

[21] Y. Huang, X. Zhang, L. Li, R. Lu, X. Zhang. Transparent wood electrode for electrocatalysis: Preparation, micro/nano structures fabrication, functionalization and applications. Chemical Engineering Journal 519 (2025) 164935. https://doi.org/10.1016/j.cej.2025.164935 DOI: https://doi.org/10.1016/j.cej.2025.164935

[22] Y. Pathaare, A.M. Reddy, P. Sangrulkar, B. Kandasubramanian, A. Satapathy. Carbon hybrid nano-architectures as an efficient electrode material for supercapacitor applications. Hybrid Advances 3 (2023) 100041. https://doi.org/10.1016/j.hybadv.2023.100041 DOI: https://doi.org/10.1016/j.hybadv.2023.100041

[23] A. Abbas, H.M. Amin. Silver nanoparticles modified electrodes for electroanalysis: An updated review and a perspective. Microchemical Journal 175 (2022) 107166. https://doi.org/10.1016/j.microc.2021.107166 DOI: https://doi.org/10.1016/j.microc.2021.107166

[24] W. Luo, Z. Zhang, G. Zhu, X. Zhang, G. Huang, T. Zhou, X. Lu. Precise pore regulation strategies for constructing high-performance metal–organic framework (MOF) membranes for gas capture: frontier advances. Journal of Environmental Chemical Engineering 13(5) (2025) 118229. https://doi.org/10.1016/j.jece.2025.118229 DOI: https://doi.org/10.1016/j.jece.2025.118229

[25] Y. Fan, X. Sun, F. Lu, C. Zhang, Y. Luo, L. Wang. Construction of a portable Eu-MOF-loaded ratio fluorescence test paper for sensitive detection of nitenpyram. Microchemical Journal 216 (2025) 114591. https://doi.org/10.1016/j.microc.2025.114591 DOI: https://doi.org/10.1016/j.microc.2025.114591

[26] Y.A. Muhammad, M. Sajid, A. Umar, N.A. Khan, I. Abdulazeez, B. Salhi, W. Falath. Recent advancements in UiO-66 (Zr) MOFs and their derivatives: Designing water-stable membranes for water applications. Desalination 615 (2025) 119222. https://doi.org/10.1016/j.desal.2025.119222 DOI: https://doi.org/10.1016/j.desal.2025.119222

[27] T. Hou, S. Chen, Q. Bie, W. Dong, J. Liu, B.Wen, X. Xu. Hygroscopic sterilization synergistic effect of UiO-66-NH2@ Potassium polyacrylate/carbon fiber negative ions electrode. Materials Today Sustainability 29 (2025) 101055. https://doi.org/10.1016/j.mtsust.2024.101055 DOI: https://doi.org/10.1016/j.mtsust.2024.101055

[28] [28] C. Li, H. Wang, J. Sun, P. Li, J. Dong, J. Huang, X. Sun. Novel electrochemiluminescence platform utilizing AuNPs@ Uio-66-NH2 bridged luminescent substrates and aptamers for the detection of pesticide residues in Chinese herbal medicines. Talanta 281 (2025) 126924. https://doi.org/10.1016/j.talanta.2024.126924 DOI: https://doi.org/10.1016/j.talanta.2024.126924

Comments (0)

No login
gif