[1] N. Berdigaliyev, M. Aljofan. An overview of drug discovery and development. Future Medicinal Chemistry 12 (2020) 939-947. https://doi.org/10.4155/fmc-2019-0307 DOI: https://doi.org/10.4155/fmc-2019-0307
[2] Z. Pei. Computer-aided drug discovery: From traditional simulation methods to language models and quantum computing. Cell Reports Physical Science 5 (2024) 11-21. https://doi.org/10.1016/j.xcrp.2024.102334 DOI: https://doi.org/10.1016/j.xcrp.2024.102334
[3] J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah, M. Spitzer, S. Zhao. Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery 18 (2019) 463-477. https://doi.org/10.1038/s41573-019-0024-5 DOI: https://doi.org/10.1038/s41573-019-0024-5
[4] S. Dara, S. Dhamercherla, S.S. Jadav, C.M. Babu, M.J. Ahsan. Machine Learning in Drug Discovery: A Review. Artificial Intelligence Review 55 (2022) 1947-1999. https://doi.org/10.1007/s10462-021-10058-4 DOI: https://doi.org/10.1007/s10462-021-10058-4
[5] G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, T. Hou, D. Cao. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research 49 (2021) W5-W14. https://doi.org/10.1093/nar/gkab255 DOI: https://doi.org/10.1093/nar/gkab255
[6] J.A. Pradeepkiran, S.B. Sainath. Brucella Melitensis: Identification and Characterization of Potential Drug Targets, Elsevier, Texas, US, (2021) 133-176. https://doi.org/10.1016/C2020-0-03079-3 DOI: https://doi.org/10.1016/C2020-0-03079-3
[7] D. Sun, W. Gao, H. Hu, S. Zhou. Why 90% of clinical drug development fails and how to improve it? Acta Pharmaceutica Sinica B 12 (2022) 3049-3062. https://doi.org/10.1016/j.apsb.2022.02.002 DOI: https://doi.org/10.1016/j.apsb.2022.02.002
[8] J. Jiménez-Luna, F. Grisoni, N. Weskamp, G. Schneider. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery 16 (2021) 949-959. https://doi.org/10.1080/17460441.2021.1909567 DOI: https://doi.org/10.1080/17460441.2021.1909567
[9] S. Harrer, P. Shah, B. Antony, J. Hu. Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences 40 (2019) 577-591. https://doi.org/10.1016/j.tips.2019.05.005 DOI: https://doi.org/10.1016/j.tips.2019.05.005
[10] M.J. Wildey, A. Haunso, M. Tudor, M. Webb, J.H. Connick. High-Throughput Screening. Annual Reports in Medicinal Chemistry 50 (2017) 149-195. https://doi.org/10.1016/bs.armc.2017.08.004 DOI: https://doi.org/10.1016/bs.armc.2017.08.004
[11] S. Nag, A.T.K. Baidya, A. Mandal, A.T. Mathew, B. Das, B. Devi, R. Kumar. Deep learning tools for advancing drug discovery and development. 3 Biotech 12 (2022) 110. https://doi.org/10.1007/s13205-022-03165-8 DOI: https://doi.org/10.1007/s13205-022-03165-8
[12] C.R. Hooijmans, R.B.M. De Vries, M. Ritskes-Hoitinga, M.M. Rovers, M.M. Leeflang, J. IntHout, K.E. Wever, L. Hooft, H. de Beer, T. Kuijpers, M.R. Macleod, E.S. Sena, G. ter Riet, R.L. Morgan, K.A. Thayer, A.A. Rooney, G.H. Guyatt, H.J. Schünemann, M.W. Langendam. Facilitating healthcare decisions by assessing the certainty in the evidence from preclinical animal studies. PLoS ONE 13(1) (2018) e0187271. https://doi.org/10.1371/journal.pone.0187271 DOI: https://doi.org/10.1371/journal.pone.0187271
[13] N. Singh, P. Vayer, S. Tanwar, J.-L. Poyet, K. Tsaioun, B.O. Villoutreix. Drug discovery and development: introduction to the general public and patient groups. Frontiers in Drug Discovery 3 (2023) 1201419. https://doi.org/10.3389/fddsv.2023.1201419 DOI: https://doi.org/10.3389/fddsv.2023.1201419
[14] F. Wu, Y. Zhou, L. Li, X. Shen, G. Chen, X. Wang, X. Liang, M. Tan, Z. Huang. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Frontiers in Chemistry 8 (2020) 726. https://doi.org/10.3389/fchem.2020.00726 DOI: https://doi.org/10.3389/fchem.2020.00726
[15] D. Wang, W. Liu, Z. Shen, L. Jiang, J. Wang, S. Li, H. Li. Deep learning based drug metabolites prediction. Frontiers in Pharmacology 10 (2020) 1586. https://doi.org/10.3389/fphar.2019.01586 DOI: https://doi.org/10.3389/fphar.2019.01586
[16] Y. Wu, G. Wang. Machine learning based toxicity prediction: From chemical structural description to transcriptome analysis. International Journal of Molecular Sciences 19(8) (2018) 2358. https://doi.org/10.3390/ijms19082358 DOI: https://doi.org/10.3390/ijms19082358
[17] K. Maharana, S. Mondal, B. Nemade. Data pre-processing and data augmentation techniques. Global Transitions Proceedings 3 (2022) 91-99. https://doi.org/10.1016/j.gltp.2022.04.020 DOI: https://doi.org/10.1016/j.gltp.2022.04.020
[18] K. Bhayani, D. Tanna, V. Maan, Dhiraj, S. Kumar. An exploration of the impact of Feature quality versus Feature quantity on the performance of a machine learning model. in: IEEE Int. Conf. Contemp. Comput. Commun., IEEE, Bangalore, India, (2023): pp.1-5 https://doi.org/10.1109/InC457730.2023.10262824 DOI: https://doi.org/10.1109/InC457730.2023.10262824
[19] S.C. Rathi, S. Misra, R. Colomo-Palacios, R. Adarsh, L.B.M. Neti, L. Kumar. Empirical evaluation of the performance of data sampling and feature selection techniques for software fault prediction. Expert Systems with Applications 223 (2023) 119806. https://doi.org/10.1016/j.eswa.2023.119806 DOI: https://doi.org/10.1016/j.eswa.2023.119806
[20] F. Caloni, I. De Angelis, T. Hartung. Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi. Archives of Toxicology 96 (2022) 1935-1950. https://doi.org/10.1007/s00204-022-03299-x DOI: https://doi.org/10.1007/s00204-022-03299-x
[21] J. Grzegorzewski, J. Brandhorst, K. Green, D. Eleftheriadou, Y. Duport, F. Barthorscht, A. Köller, D.Y.J. Ke, S. De Angelis, M. König. PK-DB: Pharmacokinetics database for individualized and stratified computational modeling. Nucleic Acids Research 49 (2021) D1358-D1364. https://doi.org/10.1093/nar/gkaa990 DOI: https://doi.org/10.1093/nar/gkaa990
[22] E. Pihan, L. Colliandre, J.F. Guichou, D. Douguet. E-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics 28 (2012) 1540-1541. https://doi.org/10.1093/bioinformatics/bts186 DOI: https://doi.org/10.1093/bioinformatics/bts186
[23] D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. MacIejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, Di. Le, A. Pon, C. Knox, M. Wilson. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research 46 (2018) D1074-D1082. https://doi.org/10.1093/nar/gkx1037 DOI: https://doi.org/10.1093/nar/gkx1037
[24] A. Gaulton, L.J. Bellis, A.P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani, J.P. Overington. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research 40 (2012) D1100-D1107. https://doi.org/10.1093/nar/gkr777 DOI: https://doi.org/10.1093/nar/gkr777
[25] Y. Zhou, Y. Zhang, D. Zhao, X. Yu, X. Shen, Y. Zhou, S. Wang, Y. Qiu, Y. Chen, F. Zhu. T TD: Ther apeutic Targ et D atabase describing tar get drugg ability inf ormation. Nucleic Acids Research 52 (2024) D1465-D1477. https://doi.org/10.1093/nar/gkad751 DOI: https://doi.org/10.1093/nar/gkad751
[26] R.R. Sayre, J.F. Wambaugh, C.M. Grulke. Database of pharmacokinetic time-series data and parameters for 144 environmental chemicals. Scientific Data 7 (2020) 122. https://doi.org/10.1038/s41597-020-0455-1 DOI: https://doi.org/10.1038/s41597-020-0455-1
[27] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research 47 (2019) D1102-D1109. https://doi.org/10.1093/nar/gky1033 DOI: https://doi.org/10.1093/nar/gky1033
[28] T. Sterling, J.J. Irwin. ZINC 15 - Ligand Discovery for Everyone. Journal of Chemical Information and Modeling 55 (2015) 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559 DOI: https://doi.org/10.1021/acs.jcim.5b00559
[29] S. Preissner, K. Kroll, M. Dunkel, C. Senger, G. Goldsobel, D. Kuzman, S. Guenther, R. Winnenburg, M. Schroeder, R. Preissner. SuperCYP: A comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Research 38 (2009) D237-D243. https://doi.org/10.1093/nar/gkp970 DOI: https://doi.org/10.1093/nar/gkp970
[30] Y. Xu, X. Liu, W. Xia, J. Ge, C.W. Ju, H. Zhang, J.Z.H. Zhang. ChemXTree: A Feature-Enhanced Graph Neural Network-Neural Decision Tree Framework for ADMET Prediction. Journal of Chemical Information and Modeling 64(22) (2024) 8440-8452. https://doi.org/10.1021/acs.jcim.4c01186 DOI: https://doi.org/10.1021/acs.jcim.4c01186
[31] E.N. Feinberg, E. Joshi, V.S. Pande, A.C. Cheng. Improvement in ADMET Prediction with Multitask Deep Featurization. Journal of Medicinal Chemistry 63 (2020) 8835-8848. https://doi.org/10.1021/acs.jmedchem.9b02187 DOI: https://doi.org/10.1021/acs.jmedchem.9b02187
[32] M. Malekipirbazari, V. Aksakalli, W. Shafqat, A. Eberhard. Performance comparison of feature selection and extraction methods with random instance selection. Expert Systems with Applications 179 (2021) 115072. https://doi.org/10.1016/j.eswa.2021.115072 DOI: https://doi.org/10.1016/j.eswa.2021.115072
[33] B. Venkatesh, J. Anuradha. A review of Feature Selection and its methods. Cybernetics and Information Technologies 19 (2019) 3-26. https://doi.org/10.2478/CAIT-2019-0001 DOI: https://doi.org/10.2478/cait-2019-0001
[34] N. Sánchez-Maroño, A. Alonso-Betanzos, M. Tombilla-Sanromán. Filter methods for feature selection - A comparative study. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4881 LNCS (2007) 178-187. https://doi.org/10.1007/978-3-540-77226-2_19 DOI: https://doi.org/10.1007/978-3-540-77226-2_19
[35] S.S.S.J. Ahmed, V. Ramakrishnan. Systems biological approach of molecular descriptors connectivity: Optimal descriptors for oral bioavailability prediction. PLoS ONE 7 (2012) e40654. https://doi.org/10.1371/journal.pone.0040654 DOI: https://doi.org/10.1371/journal.pone.0040654
[36] I. Tsamardinos, G. Borboudakis, P. Katsogridakis, P. Pratikakis, V. Christophides. A greedy feature selection algorithm for Big Data of high dimensionality. Machine Learning 108 (2019) 149-202. https://doi.org/10.1007/s10994-018-5748-7 DOI: https://doi.org/10.1007/s10994-018-5748-7
[37] H. Liu, M. Zhou, Q. Liu. An embedded feature selection method for imbalanced data classification. IEEE/CAA Journal of Automatica Sinica 6 (2019) 703-715. https://doi.org/10.1109/JAS.2019.1911447 DOI: https://doi.org/10.1109/JAS.2019.1911447
[38] H.H. Hsu, C.W. Hsieh, M. Da Lu. Hybrid feature selection by combining filters and wrappers. Expert Systems with Applications 38 (2011) 8144-8150. https://doi.org/10.1016/j.eswa.2010.12.156 DOI: https://doi.org/10.1016/j.eswa.2010.12.156
[39] P. Carracedo-Reboredo, J. Liñares-Blanco, N. Rodríguez-Fernández, F. Cedrón, F.J. Novoa, A. Carballal, V. Maojo, A. Pazos, C. Fernandez-Lozano. A review on machine learning approaches and trends in drug discovery. Computational and Structural Biotechnology Journal 19 (2021) 4538-4558. https://doi.org/10.1016/j.csbj.2021.08.011 DOI: https://doi.org/10.1016/j.csbj.2021.08.011
[40] F. Grisoni, D. Ballabio, R. Todeschini, V. Consonni. Molecular descriptors for structure-activity applications: A hands-on approach. Methods in Molecular Biology 1800 (2018) 3-53. https://doi.org/10.1007/978-1-4939-7899-1_1 DOI: https://doi.org/10.1007/978-1-4939-7899-1_1
[41] A. Mauri, V. Consonni, R. Todeschini. Molecular descriptors. Handbook of Computational Chemistry (2017) 2065-2093. https://doi.org/10.1007/978-3-319-27282-5_51 DOI: https://doi.org/10.1007/978-3-319-27282-5_51
[42] T. Mueller, A.G. Kusne, R. Ramprasad. Machine Learning in Materials Science: Recent Progress and Emerging Applications. Reviews in Computational Chemistry 29 (2016) 186-273. https://doi.org/10.1002/9781119148739.ch4 DOI: https://doi.org/10.1002/9781119148739.ch4
[43] R. Todeschini, V. Consonni. Molecular Descriptors for Chemoinformatics. Molecular Descriptors for Chemoinformatics 2 (2010) 1-252. https://doi.org/10.1002/9783527628766 DOI: https://doi.org/10.1002/9783527628766
[44] A.I. Odugbemi, C. Nyirenda, A. Christoffels, S.A. Egieyeh. Artificial intelligence in antidiabetic drug discovery: The advances in QSAR and the prediction of α-glucosidase inhibitors. Computational and Structural Biotechnology Journal 23 (2024) 2964-2977. https://doi.org/10.1016/j.csbj.2024.07.003 DOI: https://doi.org/10.1016/j.csbj.2024.07.003
[45] J. Deng, Z. Yang, H. Wang, I. Ojima, D. Samaras, F. Wang. A systematic study of key elements underlying molecular property prediction. Nature Communications 14 (2023) 6395. https://doi.org/10.1038/s41467-023-41948-6 DOI: https://doi.org/10.1038/s41467-023-41948-6
[46] B. Chandrasekaran, S.N. Abed, O. Al-Attraqchi, K. Kuche, R.K. Tekade. Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. Dosage Form Design Parameters 2 (2018) 731-755. https://doi.org/10.1016/B978-0-12-814421-3.00021-X DOI: https://doi.org/10.1016/B978-0-12-814421-3.00021-X
[47] D. Wan, J. Yang, T. Zhang, Y. Xiong. A novel method to identify influential nodes based on hybrid topology structure. Physical Communication 58 (2023) 102046. https://doi.org/10.1016/j.phycom.2023.102046 DOI: https://doi.org/10.1016/j.phycom.2023.102046
[48] D.C. Kombo, K. Tallapragada, R. Jain, J. Chewning, A.A. Mazurov, J.D. Speake, T.A. Hauser, S. Toler. 3D molecular descriptors important for clinical success. Journal of Chemical Information and Modeling 53 (2013) 327-342. https://doi.org/10.1021/ci300445e DOI: https://doi.org/10.1021/ci300445e
[49] D. Fourches, J. Ash. 4D- quantitative structure-activity relationship modeling: making a comeback. Expert Opinion on Drug Discovery 14 (2019) 1227-1235. https://doi.org/10.1080/17460441.2019.1664467 DOI: https://doi.org/10.1080/17460441.2019.1664467
[50] E. Jung, J. Kim, M. Kim, D.H. Jung, H. Rhee, J.M. Shin, K. Choi, S.K. Kang, M.K. Kim, C.H. Yun, Y.J. Choi, S.H. Choi. Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 8 (2007) 245. https://doi.org/10.1186/1471-2105-8-245 DOI: https://doi.org/10.1186/1471-2105-8-245
[51] R. Kumar, A. Sharma, M.H. Siddiqui, R.K. Tiwari. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques. Current Drug Discovery Technologies 14 (2017) 244 - 254. https://doi.org/10.2174/1570163814666170404160911 DOI: https://doi.org/10.2174/1570163814666170404160911
[52] V. Acuña-Guzman, M.E. Montoya-Alfaro, L.P. Negrón-Ballarte, C. Solis-Calero. A Machine Learning Approach for Predicting Caco-2 Cell Permeability in Natural Products from the Biodiversity in Peru. Pharmaceuticals 17(6) (2024) 750. https://doi.org/10.3390/ph17060750 DOI: https://doi.org/10.3390/ph17060750
[53] P. Stenberg, U. Norinder, K. Luthman, P. Artursson. Experimental and computational screening models for the prediction of intestinal drug absorption. Journal of Medicinal Chemistry 44 (2001) 1927-1937. https://doi.org/10.1021/jm001101a DOI: https://doi.org/10.1021/jm001101a
[54] T. Hou, J. Wang, W. Zhang, X. Xu. ADME evaluation in drug discovery. 7. prediction of oral absorption by correlation and classification. Journal of Chemical Information and Modeling 47 (2007) 208-218. https://doi.org/10.1021/ci600343x DOI: https://doi.org/10.1021/ci600343x
[55] E. Deconinck, H. Ates, N. Callebaut, E. Van Gyseghem, Y. Vander Heyden. Evaluation of chromatographic descriptors for the prediction of gastro-intestinal absorption of drugs. Journal of Chromatography A 1138 (2007) 190-202. https://doi.org/10.1016/j.chroma.2006.10.068 DOI: https://doi.org/10.1016/j.chroma.2006.10.068
[56] A. Talevi, M. Goodarzi, E. V. Ortiz, P.R. Duchowicz, C.L. Bellera, G. Pesce, E.A. Castro, L.E. Bruno-Blanch. Prediction of drug intestinal absorption by new linear and non-linear QSPR. European Journal of Medicinal Chemistry 46 (2011) 218-228. https://doi.org/10.1016/j.ejmech.2010.11.005 DOI: https://doi.org/10.1016/j.ejmech.2010.11.005
[57] A. Yan, Z. Wang, Z. Cai. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. International Journal of Molecular Sciences 9 (2008) 1961-1976. https://doi.org/10.3390/ijms9101961 DOI: https://doi.org/10.3390/ijms9101961
[58] J. Shen, F. Cheng, Y. Xu, W. Li, Y. Tang. Estimation of ADME properties with substructure pattern recognition. Journal of Chemical Information and Modeling 50 (2010) 1034-1041. https://doi.org/10.1021/ci100104j DOI: https://doi.org/10.1021/ci100104j
[59] R. Bei, J. Thomas, S. Kapur, M. Woldeyes, A. Rauk, J. Robarge, J. Feng, K. Abbou Oucherif. Predicting the clinical subcutaneous absorption rate constant of monoclonal antibodies using only the primary sequence: a machine learning approach. MAbs 16 (2024) 2352887. https://doi.org/10.1080/19420862.2024.2352887 DOI: https://doi.org/10.1080/19420862.2024.2352887
[60] Y. Kamiya, K. Handa, T. Miura, J. Ohori, A. Kato, M. Shimizu, M. Kitajima, H. Yamazaki. Machine Learning Prediction of the Three Main Input Parameters of a Simplified Physiologically Based Pharmacokinetic Model Subsequently Used to Generate Time-Dependent Plasma Concentration Data in Humans after Oral Doses of 212 Disparate Chemicals. Biological and Pharmaceutical Bulletin 45 (2022) 124-128. https://doi.org/10.1248/bpb.b21-00769 DOI: https://doi.org/10.1248/bpb.b21-00769
[61] V.D. Karalis. Machine Learning in Bioequivalence: Towards Identifying an Appropriate Measure of Absorption Rate. Applied Sciences (Switzerland) 13(1) (2023) 418. https://doi.org/10.3390/app13010418 DOI: https://doi.org/10.3390/app13010418
[62] K. Kumar, V. Chupakhin, A. Vos, D. Morrison, D. Rassokhin, M.J. Dellwo, K. McCormick, E. Paternoster, H. Ceulemans, R.L. Desjarlais. Development and implementation of an enterprise-wide predictive model for early absorption, distribution, metabolism and excretion properties. Future Medicinal Chemistry 13 (2021) 1639-1654. https://doi.org/10.4155/fmc-2021-0138 DOI: https://doi.org/10.4155/fmc-2021-0138
[63] U. Fagerholm, S. Hellberg, O. Spjuth. Article advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules 26(9) (2021) 2572. https://doi.org/10.3390/molecules26092572 DOI: https://doi.org/10.3390/molecules26092572
[64] H. Bennett-Lenane, B.T. Griffin, J.P. O’Shea. Machine learning methods for prediction of food effects on bioavailability: A comparison of support vector machines and artificial neural networks. European Journal of Pharmaceutical Sciences 168 (2022) 106018. https://doi.org/10.1016/j.ejps.2021.106018 DOI: https://doi.org/10.1016/j.ejps.2021.106018
[65] S.S.S. Ng, Y. Lu. Evaluating the Use of Graph Neural Networks and Transfer Learning for Oral Bioavailability Prediction. Journal of Chemical Information and Modeling 63 (2023) 5035-5044. https://doi.org/10.1021/acs.jcim.3c00554 DOI: https://doi.org/10.1021/acs.jcim.3c00554
[66] K. Holt, S. Nagar, K. Korzekwa. Methods to Predict Volume of Distribution. Current Pharmacology Reports 5 (2019) 391-399. https://doi.org/10.1007/s40495-019-00186-5 DOI: https://doi.org/10.1007/s40495-019-00186-5
[67] X. Liu, B.J. Smith, C. Chen, E. Callegari, S.L. Becker, X. Chen, J. Cianfrogna, A.C. Doran, S.D. Doran, J.P. Gibbs, N. Hosea, J. Liu, F.R. Nelson, M.A. Szewc, J. Van Deusen. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: An experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. Journal of Pharmacology and Experimental Therapeutics 313 (2005) 1254-1262. https://doi.org/10.1124/jpet.104.079319 DOI: https://doi.org/10.1124/jpet.104.079319
[68] Q.R. Smith, R. Samala. In situ and in vivo animal models. AAPS Advances in the Pharmaceutical Sciences Series 10 (2014) 199-211. https://doi.org/10.1007/978-1-4614-9105-7_7 DOI: https://doi.org/10.1007/978-1-4614-9105-7_7
[69] N.N. Wang, C. Huang, J. Dong, Z.J. Yao, M.F. Zhu, Z.K. Deng, B. Lv, A.P. Lu, A.F. Chen, D.S. Cao. Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC Advances 7 (2017) 19007-19018. https://doi.org/10.1039/C6RA28442F DOI: https://doi.org/10.1039/C6RA28442F
[70] E. V. Radchenko, A.S. Dyabina, V.A. Palyulin. Towards Deep Neural Network Models for the Prediction of the Blood-Brain Barrier Permeability for Diverse Organic Compounds. Molecules 25(24) (2020) 5901. https://doi.org/10.3390/MOLECULES25245901 DOI: https://doi.org/10.3390/molecules25245901
[71] V. Antontsev, A. Jagarapu, Y. Bundey, H. Hou, M. Khotimchenko, J. Walsh, J. Varshney. A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform. Scientific Reports 11 (2021) 11143. https://doi.org/10.1038/s41598-021-90637-1 DOI: https://doi.org/10.1038/s41598-021-90637-1
[72] Y. Yuan, S. Chang, Z. Zhang, Z. Li, S. Li, P. Xie, W.P. Yau, H. Lin, W. Cai, Y. Zhang, X. Xiang. A novel strategy for prediction of human plasma protein binding using machine learning techniques. Chemometrics and Intelligent Laboratory Systems 199 (2020) 103962. https://doi.org/10.1016/j.chemolab.2020.103962 DOI: https://doi.org/10.1016/j.chemolab.2020.103962
[73] A. Khaouane, S. Ferhat, S. Hanini. A Novel Methodology for Human Plasma Protein Binding: Prediction, Validation, and Applicability Domain. Pharmaceutical and Biomedical Research 8 (2022) 311-322. https://doi.org/10.32598/pbr.8.4.1086.1 DOI: https://doi.org/10.32598/PBR.8.4.1086.1
[74] I.F. Martins, A.L. Teixeira, L. Pinheiro, A.O. Falcao. A Bayesian approach to in Silico blood-brain barrier penetration modeling. Journal of Chemical Information and Modeling 52 (2012) 1686-1697. https://doi.org/10.1021/ci300124c DOI: https://doi.org/10.1021/ci300124c
[75] H. Golmohammadi, Z. Dashtbozorgi, W.E. Acree. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. European Journal of Pharmaceutical Sciences 47 (2012) 421-429. https://doi.org/10.1016/j.ejps.2012.06.021 DOI: https://doi.org/10.1016/j.ejps.2012.06.021
[76] H. Iwata, T. Matsuo, H. Mamada, T. Motomura, M. Matsushita, T. Fujiwara, K. Maeda, K. Handa. Predicting Total Drug Clearance and Volumes of Distribution Using the Machine Learning-Mediated Multimodal Method through the Imputation of Various Nonclinical Data. Journal of Chemical Information and Modeling 62 (2022) 4057-4065. https://doi.org/10.1021/acs.jcim.2c00318 DOI: https://doi.org/10.1021/acs.jcim.2c00318
[77] N. Parrott, N. Manevski, A. Olivares-Morales. Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or in Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds. Molecular Pharmaceutics 19 (2022) 3858-3868. https://doi.org/10.1021/acs.molpharmaceut.2c00350 DOI: https://doi.org/10.1021/acs.molpharmaceut.2c00350
[78] V. Mulpuru, N. Mishra. In Silico Prediction of Fraction Unbound in Human Plasma from Chemical Fingerprint Using Automated Machine Learning. ACS Omega 6 (2021) 6791-6797. https://doi.org/10.1021/acsomega.0c05846 DOI: https://doi.org/10.1021/acsomega.0c05846
[79] H. Cao, J. Peng, Z. Zhou, Z. Yang, L. Wang, Y. Sun, Y. Wang, Y. Liang. Investigation of the Binding Fraction of PFAS in Human Plasma and Underlying Mechanisms Based on Machine Learning and Molecular Dynamics Simulation. Environmental Science and Technology 57 (2023) 17762-17773. https://doi.org/10.1021/acs.est.2c04400 DOI: https://doi.org/10.1021/acs.est.2c04400
[80] M. Riedl, S. Mukherjee, M. Gauthier. Descriptor-Free Deep Learning QSAR Model for the Fraction Unbound in Human Plasma. Molecular Pharmaceutics 20 (2023) 4984-4993. https://doi.org/10.1021/acs.molpharmaceut.3c00129 DOI: https://doi.org/10.1021/acs.molpharmaceut.3c00129
[81] F. Hammann, H. Gutmann, U. Baumann, C. Helma, J. Drewe. Classification of cytochrome P450 activities using machine learning methods. Molecular Pharmaceutics 6 (2009) 1920-1926. https://doi.org/10.1021/mp900217x DOI: https://doi.org/10.1021/mp900217x
[82] T. Fox, J. Kriegl. Machine Learning Techniques for In Silico Modeling of Drug Metabolism. Current Topics in Medicinal Chemistry 6 (2006) 1579-1591. https://doi.org/10.2174/156802606778108915 DOI: https://doi.org/10.2174/156802606778108915
[83] H.X. Liu, X.J. Yao, R.S. Zhang, M.C. Liu, Z.D. Hu, B.T. Fan. Prediction of the tissue/blood partition coefficients of organic compounds based on the molecular structure using least-squares support vector machines. Journal of Computer-Aided Molecular Design 19 (2005) 499-508. https://doi.org/10.1007/s10822-005-9003-5 DOI: https://doi.org/10.1007/s10822-005-9003-5
[84] J.Y. Ryu, J.H. Lee, B.H. Lee, J.S. Song, S. Ahn, K.S. Oh. PredMS: a random forest model for predicting metabolic stability of drug candidates in human liver microsomes. Bioinformatics 38 (2022) 364-368. https://doi.org/10.1093/bioinformatics/btab547 DOI: https://doi.org/10.1093/bioinformatics/btab547
[85] M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Violi, A.O. Hero. A deep learning architecture for metabolic pathway prediction. Bioinformatics 36 (2020) 2547-2553. https://doi.org/10.1093/bioinformatics/btz954
[86] N.N. Wang, X.G. Wang, G.L. Xiong, Z.Y. Yang, A.P. Lu, X. Chen, S. Liu, T.J. Hou, D.S. Cao. Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes. Journal of Cheminformatics 14 (2022) 23. https://doi.org/10.1186/s13321-022-00602-x DOI: https://doi.org/10.1186/s13321-022-00602-x
[87] H. Mamada, Y. Nomura, Y. Uesawa. Prediction Model of Clearance by a Novel Quantitative Structure-Activity Relationship Approach, Combination DeepSnap-Deep Learning and Conventional Machine Learning. ACS Omega 6 (2021) 23570-23577. https://doi.org/10.1021/acsomega.1c03689 DOI: https://doi.org/10.1021/acsomega.1c03689
[88] C.E. Keefer, G. Chang, L. Di, N.A. Woody, D.A. Tess, S.M. Osgood, B. Kapinos, J. Racich, A.A. Carlo, A. Balesano, N. Ferguson, C. Orozco, L. Zueva, L. Luo. The Comparison of Machine Learning and Mechanistic In Vitro-In Vivo Extrapolation Models for the Prediction of Human Intrinsic Clearance. Molecular Pharmaceutics 20 (2023) 5616-5630. https://doi.org/10.1021/acs.molpharmaceut.3c00502 DOI: https://doi.org/10.1021/acs.molpharmaceut.3c00502
[89] R. Rodríguez-Pérez, M. Trunzer, N. Schneider, B. Faller, G. Gerebtzoff. Multispecies Machine Learning Predictions of in Vitro Intrinsic Clearance with Uncertainty Quantification Analyses. Molecular Pharmaceutics 20 (2023) 383-394. https://doi.org/10.1021/acs.molpharmaceut.2c00680 DOI: https://doi.org/10.1021/acs.molpharmaceut.2c00680
[90] A. Andrews-Morger, M. Reutlinger, N. Parrott, A. Olivares-Morales. A Machine Learning Framework to Improve Rat Clearance Predictions and Inform Physiologically Based Pharmacokinetic Modeling. Molecular Pharmaceutics 20 (2023) 5052-5065. https://doi.org/10.1021/acs.molpharmaceut.3c00374 DOI: https://doi.org/10.1021/acs.molpharmaceut.3c00374
[91] T.T. Van Tran, H. Tayara, K.T. Chong. Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives. Pharmaceutics 15(4) (2023) 1260. https://doi.org/10.3390/pharmaceutics15041260 DOI: https://doi.org/10.3390/pharmaceutics15041260
[92] R. Watanabe, R. Ohashi, T. Esaki, H. Kawashima, Y. Natsume-Kitatani, C. Nagao, K. Mizuguchi. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Scientific Reports 9 (2019) 18782. https://doi.org/10.1038/s41598-019-55325-1 DOI: https://doi.org/10.1038/s41598-019-55325-1
[93] D. Bassani, N.J. Parrott, N. Manevski, J.D. Zhang. Another string to your bow: machine learning prediction of the pharmacokinetic properties of small molecules. Expert Opinion on Drug Discovery 19 (2024) 683-698. https://doi.org/10.1080/17460441.2024.2348157 DOI: https://doi.org/10.1080/17460441.2024.2348157
[94] S. Seal, M.-A. Trapotsi, V. Subramanian, O. Spjuth, N. Greene, A. Bender. PKSmart: An Open-Source Computational Model to Predict in vivo Pharmacokinetics of Small Molecules. BioRxiv (2024). https://doi.org/10.1101/2024.02.02.578658 DOI: https://doi.org/10.1101/2024.02.02.578658
[95] J. Fan, S. Shi, H. Xiang, L. Fu, Y. Duan, D. Cao, H. Lu. Predicting Elimination of Small-Molecule Drug Half-Life in Pharmacokinetics Using Ensemble and Consensus Machine Learning Methods. Journal of Chemical Information and Modeling 64 (2024) 3080-3092. https://doi.org/10.1021/acs.jcim.3c02030 DOI: https://doi.org/10.1021/acs.jcim.3c02030
[96] Y.W. Hsiao, U. Fagerholm, U. Norinder. In silico categorization of in vivo intrinsic clearance using machine learning. Molecular Pharmaceutics 10 (2013) 1318-1321. https://doi.org/10.1021/mp300484r DOI: https://doi.org/10.1021/mp300484r
[97] H. Iwata, T. Matsuo, H. Mamada, T. Motomura, M. Matsushita, T. Fujiwara, M. Kazuya, K. Handa. Prediction of Total Drug Clearance in Humans Using Animal Data: Proposal of a Multimodal Learning Method Based on Deep Learning. Journal of Pharmaceutical Sciences 110 (2021) 1834-1841. https://doi.org/10.1016/j.xphs.2021.01.020 DOI: https://doi.org/10.1016/j.xphs.2021.01.020
[98] Y. Kosugi, N. Hosea. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using in Vitro Assay. Molecular Pharmaceutics 17 (2020) 2299-2309. https://doi.org/10.1021/acs.molpharmaceut.9b01294 DOI: https://doi.org/10.1021/acs.molpharmaceut.9b01294
[99] P. Paixão, L.F. Gouveia, J.A.G. Morais. Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes by using artificial neural networks. European Journal of Pharmaceutical Sciences 39 (2010) 310-321. https://doi.org/10.1016/j.ejps.2009.12.007 DOI: https://doi.org/10.1016/j.ejps.2009.12.007
[100] S.W. Paine, P. Barton, J. Bird, R. Denton, K. Menochet, A. Smith, N.P. Tomkinson, K.K. Chohan. A rapid computational filter for predicting the rate of human renal clearance. Journal of Molecular Graphics and Modelling 29 (2010) 529-537. https://doi.org/10.1016/j.jmgm.2010.10.003 DOI: https://doi.org/10.1016/j.jmgm.2010.10.003
[101] Y. Wang, H. Liu, Y. Fan, X. Chen, Y. Yang, L. Zhu, J. Zhao, Y. Chen, Y. Zhang. In Silico Prediction of Human Intravenous Pharmacokinetic Parameters with Improved Accuracy. Journal of Chemical Information and Modeling 59 (2019) 3968-3980. https://doi.org/10.1021/acs.jcim.9b00300 DOI: https://doi.org/10.1021/acs.jcim.9b00300
[102] W. Guo, J. Liu, F. Dong, M. Song, Z. Li, M.K.H. Khan, T.A. Patterson, H. Hong. Review of machine learning and deep learning models for toxicity prediction. Experimental Biology and Medicine 248 (2023) 1952-1973. https://doi.org/10.1177/15353702231209421 DOI: https://doi.org/10.1177/15353702231209421
[103] P. Rana, S. Kogut, X. Wen, F. Akhlaghi, M.D. Aleo. Most Influential Physicochemical and in Vitro Assay Descriptors for Hepatotoxicity and Nephrotoxicity Prediction. Chemical Research in Toxicology 33 (2020) 1780-1790. https://doi.org/10.1021/acs.chemrestox.0c00040 DOI: https://doi.org/10.1021/acs.chemrestox.0c00040
[104] M.Z.I. Khan, J.N. Ren, C. Cao, H.Y.X. Ye, H. Wang, Y.M. Guo, J.R. Yang, J.Z. Chen. Comprehensive hepatotoxicity prediction: ensemble model integrating machine learning and deep learning. Frontiers in Pharmacology 15 (2024) 1441587. https://doi.org/10.3389/fphar.2024.1441587 DOI: https://doi.org/10.3389/fphar.2024.1441587
[105] R. Ancuceanu, M.V. Hovanet, A.I. Anghel, F. Furtunescu, M. Neagu, C. Constantin, M. Dinu. Computational models using multiple machine learning algorithms for predicting drug hepatotoxicity with the dilirank dataset. International Journal of Molecular Sciences 21(6) (2020) 2114. https://doi.org/10.3390/ijms21062114 DOI: https://doi.org/10.3390/ijms21062114
[106] Y. Lu, L. Liu, D. Lu, Y. Cai, M. Zheng, X. Luo, H. Jiang, K. Chen. Predicting Hepatotoxicity of Drug Metabolites Via an Ensemble Approach Based on Support Vector Machine. Combinatorial Chemistry & High Throughput Screening 20 (2017) 839-849. https://doi.org/10.2174/1386207320666171121113255 DOI: https://doi.org/10.2174/1386207320666171121113255
[107] L.W. Chiu, Y.E. Ku, F.Y. Chan, W.N. Lie, H.J. Chao, S.Y. Wang, W.C. Shen, H.Y. Chen. Machine learning algorithms to predict colistin-induced nephrotoxicity from electronic health records in patients with multidrug-resistant gram-negative infection. International Journal of Antimicrobial Agents 64 (2024) 107175. https://doi.org/10.1016/j.ijantimicag.2024.107175 DOI: https://doi.org/10.1016/j.ijantimicag.2024.107175
[108] J.Y. Ryu, W.D. Jang, J. Jang, K.S. Oh. PredAOT: a computational framework for prediction of acute oral toxicity based on multiple random forest models. BMC Bioinformatics 24 (2023) 66. https://doi.org/10.1186/s12859-023-05176-5 DOI: https://doi.org/10.1186/s12859-023-05176-5
[109] F. Mostafa, V. Howle, M. Chen. Machine Learning to Predict Drug-Induced Liver Injury and Its Validation on Failed Drug Candidates in Development †. Toxics 12(6) (2024) 385. https://doi.org/10.3390/toxics12060385 DOI: https://doi.org/10.3390/toxics12060385
[110] C. Cai, P. Guo, Y. Zhou, J. Zhou, Q. Wang, F. Zhang, J. Fang, F. Cheng. Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling 59 (2019) 1073-1084. https://doi.org/10.1021/acs.jcim.8b00769 DOI: https://doi.org/10.1021/acs.jcim.8b00769
[111] D. Fan, H. Yang, F. Li, L. Sun, P. Di, W. Li, Y. Tang, G. Liu. In silico prediction of chemical genotoxicity using machine learning methods and structural alerts. Toxicology Research 7 (2018) 211-220. https://doi.org/10.1039/c7tx00259a DOI: https://doi.org/10.1039/C7TX00259A
[112] N.K. Shinada, N. Koyama, M. Ikemori, T. Nishioka, S. Hitaoka, A. Hakura, S. Asakura, Y. Matsuoka, S.K. Palaniappan. Optimizing machine-learning models for mutagenicity prediction through better feature selection. Mutagenesis 37 (2022) 191-202. https://doi.org/10.1093/mutage/geac010 DOI: https://doi.org/10.1093/mutage/geac010
[113] T. Li, W. Tong, R. Roberts, Z. Liu, S. Thakkar. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction Using Model-Level Representation. Frontiers in Artificial Intelligence 4 (2021) 757780. https://doi.org/10.3389/frai.2021.757780 DOI: https://doi.org/10.3389/frai.2021.757780
[114] A. Talebi, A. Bitarafan-Rajabi, A. Alizadeh-asl, P. Seilani, B. Khajetash, G. Hajianfar, M. Tavakoli. Machine learning based radiomics model to predict radiotherapy induced cardiotoxicity in breast cancer. Journal of Applied Clinical Medical Physics 26(4) (2024) e14614. https://doi.org/10.1002/acm2.14614 DOI: https://doi.org/10.1002/acm2.14614
[115] S. Iftkhar, A.G.C. De Sá, J.P.L. Velloso, R. Aljarf, D.E.V. Pires, D.B. Ascher. CardioToxCSM: A Web Server for Predicting Cardiotoxicity of Small Molecules. Journal of Chemical Information and Modeling 62 (2022) 4827-4836. https://doi.org/10.1021/acs.jcim.2c00822 DOI: https://doi.org/10.1021/acs.jcim.2c00822
[116] P. Trairatphisan, L. Dorsheimer, P. Monecke, J. Wenzel, R. James, A. Czich, Y. Dietz-Baum, F. Schmidt. Machine learning enhances genotoxicity assessment using MultiFlow® DNA damage assay. Environmental and Molecular Mutagenesis 66 (2024) 45-57. https://doi.org/10.1002/em.22648 DOI: https://doi.org/10.1002/em.22648
[117] C.N. Cavasotto, V. Scardino. Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point. ACS Omega 7 (2022) 47536-47546. https://doi.org/10.1021/acsomega.2c05693 DOI: https://doi.org/10.1021/acsomega.2c05693
[118] X. Ma, R. Wang, Y. Xue, Z. Li, S. Yang, Y. Wei, Y. Chen. Advances in Machine Learning Prediction of Toxicological Properties and Adverse Drug Reactions of Pharmaceutical Agents. Current Drug Safety 3 (2008) 100-114. https://doi.org/10.2174/157488608784529224 DOI: https://doi.org/10.2174/157488608784529224
[119] N. Madhukar, K. Gayvert, C. Gilvary, O. Elemento. A Machine Learning Approach Predicts Tissue-Specific Drug Adverse Events. BioRxiv (2018). https://doi.org/10.1101/288332 DOI: https://doi.org/10.1101/288332
[120] D. Naga, W. Muster, E. Musvasva, G.F. Ecker. Off-targetP ML: an open source machine learning framework for off-target panel safety assessment of small molecules. Journal of Cheminformatics 14 (2022) 27. https://doi.org/10.1186/s13321-022-00603-w DOI: https://doi.org/10.1186/s13321-022-00603-w
[121] L. Tonoyan, A.G. Siraki. Machine learning in toxicological sciences: opportunities for assessing drug toxicity. Frontiers in Drug Discovery 4 (2024) 1336025. https://doi.org/10.3389/fddsv.2024.1336025 DOI: https://doi.org/10.3389/fddsv.2024.1336025
[122] S. Okechukwuyem Ojji. Emerging Technology Integration - Artificial Intelligence (AI) and Machine Learning (ML) for Predictive Analysis for Safety and Toxicity Assessment in Environmental Toxicology. International Journal of Scientific Research and Management (IJSRM) 12 (2024) 1182-1195. https://doi.org/10.18535/ijsrm/v12i05.ec03 DOI: https://doi.org/10.18535/ijsrm/v12i05.ec03
[123] V. Blay, X. Li, J. Gerlach, F. Urbina, S. Ekins. Combining DELs and machine learning for toxicology prediction. Drug Discovery Today 27 (2022) 103351. https://doi.org/10.1016/j.drudis.2022.103351 DOI: https://doi.org/10.1016/j.drudis.2022.103351
[124] A. Lavecchia. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discovery Today 24 (2019) 2017-2032. https://doi.org/10.1016/j.drudis.2019.07.006 DOI: https://doi.org/10.1016/j.drudis.2019.07.006
[125] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, T. Blaschke. The rise of deep learning in drug discovery. Drug Discovery Today 23 (2018) 1241-1250. https://doi.org/10.1016/j.drudis.2018.01.039 DOI: https://doi.org/10.1016/j.drudis.2018.01.039
[126] S. Min, B. Lee, S. Yoon. Deep learning in bioinformatics. Briefings in Bioinformatics 18 (2017) 851-869. https://doi.org/10.1093/bib/bbw068 DOI: https://doi.org/10.1093/bib/bbw068
[127] H. Belyadi, A. Haghighat. Supervised learning. Machine Learning Guide for Oil and Gas Using Python (2021) 169-295. https://doi.org/10.1016/b978-0-12-821929-4.00004-4 DOI: https://doi.org/10.1016/B978-0-12-821929-4.00004-4
[128] I.V.D. Srihith, P.V. Lakshmi, A.D. Donald, T. Aditya, T.A.S. Srinivas, G. Thippanna. A Forest of Possibilities: Decision Trees and Beyond. HARB Publication 6 (2023) 29-37. http://dx.doi.org/10.5281/zenodo.8372196
[129] D.S. Palmer, N.M. O’Boyle, R.C. Glen, J.B.O. Mitchell. Random forest models to predict aqueous solubility. Journal of Chemical Information and Modeling 47 (2007) 150-158. https://doi.org/10.1021/ci060164k DOI: https://doi.org/10.1021/ci060164k
[130] D.S. Cao, Y.N. Yang, J.C. Zhao, J. Yan, S. Liu, Q.N. Hu, Q.S. Xu, Y.Z. Liang. Computer-aided prediction of toxicity with substructure pattern and random forest. Journal of Chemometrics 26 (2012) 7-15. https://doi.org/10.1002/cem.1416 DOI: https://doi.org/10.1002/cem.1416
[131] D.S. Cao, Q.N. Hu, Q.S. Xu, Y.N. Yang, J.C. Zhao, H.M. Lu, L.X. Zhang, Y.Z. Liang. In silico classification of human maximum recommended daily dose based on modified random forest and substructure fingerprint. Analytica Chimica Acta 692 (2011) 50-56. https://doi.org/10.1016/j.aca.2011.02.010 DOI: https://doi.org/10.1016/j.aca.2011.02.010
[132] Y. Uesawa. Rigorous selection of random forest models for identifying compounds that activate toxicity-related pathways. Frontiers in Environmental Science 4 (2016) 9. https://doi.org/10.3389/fenvs.2016.00009 DOI: https://doi.org/10.3389/fenvs.2016.00009
[133] M.M. Suprijono, H. Sujuti, D. Kurnia, S.B. Widjanarko. Absorption, distribution, metabolism, excretion, and toxicity evaluation of Papua red fruit flavonoids through a computational study. in: IOP Conf. Ser. Earth Environ. Sci., IOP Science, Malang East Java Indonesia, (2020) https://doi.org/10.1088/1755-1315/475/1/012078 DOI: https://doi.org/10.1088/1755-1315/475/1/012078
[134] M.N. Murty, R. Raghava. Kernel-based SVM. SpringerBriefs in Computer Science 0 (2016) 57-67. https://doi.org/10.1007/978-3-319-41063-0_5 DOI: https://doi.org/10.1007/978-3-319-41063-0_5
[135] M.W.B. Trotter, S.B. Holden. Support vector machines for ADME property classification. QSAR and Combinatorial Science 22 (2003) 533-548. https://doi.org/10.1002/qsar.200310006 DOI: https://doi.org/10.1002/qsar.200310006
[136] J. Gola, O. Obrezanova, E. Champness, M. Segall. ADMET property prediction: The state of the art and current challenges. QSAR and Combinatorial Science 25 (2006) 1172-1180. https://doi.org/10.1002/qsar.200610093 DOI: https://doi.org/10.1002/qsar.200610093
[137] Y. Shi, K. Yang, Z. Yang, Y. Zhou. Primer on artificial intelligence. Mobile Edge Artificial Intelligence (2022) 7-36. https://doi.org/10.1016/b978-0-12-823817-2.00011-5 DOI: https://doi.org/10.1016/B978-0-12-823817-2.00011-5
[138] D. Gadaleta, F. Pizzo, A. Lombardo, A. Carotti, S.E. Escher, O. Nicolotti, E. Benfenati. A k-NN algorithm for predicting oral sub-chronic toxicity in the rat. Altex 31 (2014) 423-432. https://doi.org/10.14573/altex.1405091 DOI: https://doi.org/10.14573/altex.1405091
[139] F. Como, E. Carnesecchi, S. Volani, J.L. Dorne, J. Richardson, A. Bassan, M. Pavan, E. Benfenati. Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model. Chemosphere 166 (2017) 438-444. https://doi.org/10.1016/j.chemosphere.2016.09.092 DOI: https://doi.org/10.1016/j.chemosphere.2016.09.092
[140] S. Chavan, R. Friedman, I.A. Nicholls. Acute toxicity-supported chronic toxicity prediction: A k-nearest neighbor coupled read-across strategy. International Journal of Molecular Sciences 16 (2015) 11659-11677. https://doi.org/10.3390/ijms160511659 DOI: https://doi.org/10.3390/ijms160511659
[141] H. Tian, R. Ketkar, P. Tao. ADMETboost: a web server for accurate ADMET prediction. Journal of Molecular Modeling 28 (2022) 408. https://doi.org/10.1007/s00894-022-05373-8 DOI: https://doi.org/10.1007/s00894-022-05373-8
[142] T. An, Y. Chen, Y. Chen, L. Ma, J. Wang, J. Zhao. A machine learning-based approach to ERα bioactivity and drug ADMET prediction. Frontiers in Genetics 13 (2023) 1087273. https://doi.org/10.3389/fgene.2022.1087273 DOI: https://doi.org/10.3389/fgene.2022.1087273
[143] X. Li, L. Tang, Z. Li, D. Qiu, Z. Yang, B. Li. Prediction of ADMET Properties of Anti-Breast Cancer Compounds Using Three Machine Learning Algorithms. Molecules 28 (2023) 2326. https://doi.org/10.3390/molecules28052326 DOI: https://doi.org/10.3390/molecules28052326
[144] P.M. Vassiliev, A. V. Golubeva, A.R. Koroleva, M.A. Perfilev, A.N. Kochetkov. In Silico Prediction of Toxicological and Pharmacokinetic Characteristics of Medicinal Compounds. Safety and Risk of Pharmacotherapy 11 (2023) 390-408. https://doi.org/10.30895/2312-7821-2023-11-4-390-408 DOI: https://doi.org/10.30895/2312-7821-2023-11-4-390-408
[145] J. Wenzel, H. Matter, F. Schmidt. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. Journal of Chemical Information and Modeling 59 (2019) 1253-1268. https://doi.org/10.1021/acs.jcim.8b00785
[146] D.A. Winkler. Neural networks in ADME and toxicity prediction. Drugs of the Future 29 (2004) 1043-1057. https://doi.org/10.1358/dof.2004.029.10.863395 DOI: https://doi.org/10.1358/dof.2004.029.10.863395
[147] I. Pantic, J. Paunovic, J. Cumic, S. Valjarevic, G.A. Petroianu, P.R. Corridon. Artificial neural networks in contemporary toxicology research. Chemico-Biological Interactions 369 (2023) 110269. https://doi.org/10.1016/j.cbi.2022.110269 DOI: https://doi.org/10.1016/j.cbi.2022.110269
[148] N. Schapin, M. Majewski, A. Varela-Rial, C. Arroniz, G. De Fabritiis. Machine learning small molecule properties in drug discovery. Artificial Intelligence Chemistry 1 (2023) 100020. https://doi.org/10.1016/j.aichem.2023.100020 DOI: https://doi.org/10.1016/j.aichem.2023.100020
[149] P. Schyman, R. Liu, V. Desai, A. Wallqvist. vNN web server for ADMET predictions. Frontiers in Pharmacology 8 (2017) 889. https://doi.org/10.3389/fphar.2017.00889 DOI: https://doi.org/10.3389/fphar.2017.00889
[150] H. González-Díaz. ADMET-Multi-Output Cheminformatics Models for Drug Delivery, Interactomics, and Nanotoxicology. Current Drug Delivery 13 (2016) 1. https://pubmed.ncbi.nlm.nih.gov/27417300/
[151] A.T. Müller, J.A. Hiss, G. Schneider. Recurrent Neural Network Model for Constructive Peptide Design. Journal of Chemical Information and Modeling 58 (2018) 472-479. https://doi.org/10.1021/acs.jcim.7b00414 DOI: https://doi.org/10.1021/acs.jcim.7b00414
[152] A.
Comments (0)