Achagri G, El Idrissi A, Majdoub M, Essamlali Y, Sair S, Chakir A, Zahouily M (2022) Octadecylamine-functionalized cellulose nanocrystals as durable superhydrophobic surface modifier for polyester coating: towards oil/water separation. Results Surf Interfaces 8:100061. https://doi.org/10.1016/j.rsurfi.2022.100061
Agarwal UP, Ralph SA, Baez C, Reiner RS (2021) Detection and quantitation of cellulose II by Raman spectroscopy. Cellulose 28(14):9069–9079. https://doi.org/10.1007/s10570-021-04124-x
Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H (2021) Recent developments in nanocellulose-based aerogels inthermal applications: a review. ACS Nano 15(3):3849–3874.
Allouss D, Essamlali Y, Amadine O, Chakir A, Zahouily M (2019) Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Adv 9:37858–37869. https://doi.org/10.1039/C9RA06450H
Allouss D, Essamlali Y, Chakir A, Khadhar S, Zahouily M (2020) Effective removal of Cu(II) from aqueous solution over graphene oxide encapsulated carboxymethyl cellulose-alginate hydrogel microspheres: towards real wastewater treatment plants. Environ Sci Pollut Res 27:7476–7492. https://doi.org/10.1007/s11356-019-06950-w
Anet FAL, O’Leary DJ (1992) The shielding tensor part II: Understanding its strange effect on relaxation. Concepts Magn Reson 4:35–52. https://doi.org/10.1002/cmr.1820040103
Antzutkin ON, Shekar SC, Levitt MH (1995) Two-dimensional sideband separation in magic angle spinning NMR. J Magn Reson A 115:7–19. https://doi.org/10.1006/jmra.1995.1142
Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of Recent Research into Cellulosic Whiskers, their Properties and their Application in Nanocomposite Field. Biomacromolecules 6:612– 626. https://doi.org/10.1021/bm0493685
Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. https://doi.org/10.1021/bm049300p
Beckmann PA (1988) Spectral densities and nuclear spin relaxation in solids. Phys Rep 171:85–128. https://doi.org/10.1016/0370-1573(88)90073-7
Bergenstrahle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595. https://doi.org/10.1021/jp074641t
Beriashvili D, Zhou J, Liu Y, Folkers GE, Baldus M (2024) Cellular applications of DNP solid-sate NMR-state of the Art and a look to the future. Chemistry- Eur J 30:e202400323–e202400321. https://doi.org/10.1002/chem.202400323
Berruyer P, Gericke M, Moutzouri P, Jakobi D, Bardet M, Karlson L, Schantz S, Heinze T, Emsley L (2021) Advanced characterization of regioselectively substituted Methylcellulose model compounds by DNP enhanced solid-state NMR spectroscopy. https://doi.org/10.1016/j.carbpol.2021.117944. Carbohydrate Polymers262:117944
Berruyer P, Moutzouri P, Gericke M, Jakobi D, Bardet M, Heinze T, Karlson L, Schantz S, Emsley L (2022) Spatial distribution of functional groups in cellulose ethers by DNP-Enhanced Solid-State NMR spectroscopy. Macromolecules 55:2952–2958. https://doi.org/10.1021/acs.macromol.2c00061
Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effect in nuclear magnetic resonance absorption. Phys Rev 73:679–715. https://doi.org/10.1103/PhysRev.73.679
Bowie BT, Chase DB, Griffiths PR, DuPont (2000) Factors affecting the performance of Bench—Top Raman spectrometers. Part II: effect of sample. Appl Spectrosc 54(6):200A–207A. https://doi.org/10.1366/0003702001950175
Boy R, Narayanan G, Kotek R (2018) Formation of cellulose and protein blend biofibers. In: Lucia L, Ayoub A (eds) Polysaccharide-Based fibers and composites: chemical and engineering fundamentals and industrial applications. Springer International Publishing, p 77. DOI: https://doi.org/10.1007/978-3-319-56596-5_5.
Buffiere J, Balogh-Michels Z, Borrega M, Geiger T, Zimmermann T, Sixta H (2017) The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydr Polym 178:48–56. https://doi.org/10.1016/j.carbpol.2017.09.028
Chakrabarty A, Teramoto Y (2018) Recent advances in nanocellulose composites with polymers: A guide for choosing partners and how to incorporate them. Polymers 10:517. https://doi.org/10.3390/polym10050517
Chen R, Feng D, Chen G, Chen X, Hong W (2021a) Re-printablechiral photonic paper with invisible patterns andtunable wettability. Adv Funct Mater 31(16):2009916. https://doi.org/10.1002/adfm20200 9916
Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K (2021b) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv Mater 33(11):2005569. https://doi.org/10.1002/adma20200 5569
Connor TM (1964) Distributions of correlation times and their effect on the comparison of molecular motions derived from nuclear spin-lattice and dielectric relaxation. Trans Faraday Soc 60:1574–1591. https://doi.org/10.1039/TF9646001574
Dais P, Spyros A (1995) 13 C nuclear magnetic relaxation and local dynamics of synthetic polymers in dilute solution and in the bulk state. Prog Nucl Magn Reson Spectrosc 27:555–633. https://doi.org/10.1016/0079-6565(95)01014-9
Dardari O, Amadine O, Sair S, Ousaleh HA, Essamlali Y, El Idrissi A, Aboulhrouz S, Danoun K, Maati H, Zahouily M (2024) Cellulose nanocrystal stabilized copper nanoparticles for grafting phase change materials with high thermal conductivity. J Energy Storage 79:110182. https://doi.org/10.1016/j.est.2023.110182
Dassanayake RS, Dissanayake N, Fierro JS, Abidi N, Quitevis EL, Boggavarappu K, Thalangamaarachchige VD (2023) Characterization of cellulose nanocrystals by current spectroscopic techniques. Appl Spectrosc Rev 58(3):180–205. https://doi.org/10.1080/05704928.2021.1951283
Deligey F, Frank MA, Cho SH, Kirui A, Mentink-Vigier F, Swulius MT, Tracy Nixon B, Wang T (2022) Structure of In Vitro-Synthesized Cellulose Fibrils Viewed by Cryo-Electron Tomography and 13 C Natural-Abundance Dynamic Nuclear Polarization Solid-State NMR. Biomacromolecules 23(6):2290–2301. https://doi.org/10.1021/acs.biomac.1c01674
Dey KK, Ghosh M (2020) Understanding the effect of deacetylation on Chitin by measuring chemical shift anisotropy tensor and spin lattice relaxation time. Chem Phys Lett 738:136782. https://doi.org/10.1016/j.cplett.2019.136782
Dey KK, Ghosh M (2022) Understanding the effect of an anionic Side-Chain on the nuclear spin dynamics of a polysaccharide. Cellulose 29:1381–1392. https://link.springer.com/article/https://doi.org/10.1007/s10570-021-04394-5
Dey KK, Ghosh M (2024) Interrelationship between solubility and nuclear spin-lattice relaxation time in cellulose derivatives with solid-state NMR. Cellulose 31:7905–7924. https://doi.org/10.1007/s10570-024-06109-y
Dey KK, Gayen S, Ghosh M (2021) Structure and dynamics of sodium alginate as elucidated by chemical shift anisotropy and site-specific spin–lattice relaxation time measurements. Eur Biophys J 50(7):963–977. https://doi.org/10.1007/s00249-021-01559-9
Ding Q, Han W, Li X, Jiang Y, Zhao C (2020) New insights into the auto fluorescence properties of cellulose/nanocellulose. Sci Rep 10(1):21387. https://doi.org/10.1038/s41598-020-78480-2
Dixon WT (1982) Spinning-sideband-free and spinning-sideband only NMR spectra in spinning samples. J Chem Phys 77:1800–1809. https://doi.org/10.1063/1.444076
Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. https://doi.org/10.1007/s10853-009-3874-0
El Allaoui B, Chakhtouna H, Zari N, Benzeid H, Qaiss A el, kacem, Bouhfid R (2023) Superhydrophobicalkylsilane functionalized cellulose beads for efficient oil/ water separation. J Water Process Eng 54:104015. https://doi.org/10.1016/j.jwpe.2023.104015
El Nokab MEH (2020) Use of Solid-State NMR spectroscopy for investigating Polysaccharide-Based hydrogels: A review. Carbohydr Polym 240:116276. https://doi.org/10.1016/j.carbpol.2020.116276
El Nokab MEH, Lasorsa A, Sebakhy KO, Picchioni F, van der Wel PCA (2022) Solid-State NMR Spectroscopy Insights for Resolving Different Water Pools in Alginate Hydrogels. Food Hydrocoll 127:107500. https://doi.org/10.1016/j.foodhyd.2022.107500
Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7(9):1831–1835. https://doi.org/10.1002/1521-3765
French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4
French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609. https://doi.org/10.1007/s10570-017-1450-3
French AD, Cintro´n MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y
Comments (0)