Investigating structural and dynamic changes in cellulose due to nanocrystallization

Achagri G, El Idrissi A, Majdoub M, Essamlali Y, Sair S, Chakir A, Zahouily M (2022) Octadecylamine-functionalized cellulose nanocrystals as durable superhydrophobic surface modifier for polyester coating: towards oil/water separation. Results Surf Interfaces 8:100061. https://doi.org/10.1016/j.rsurfi.2022.100061

Article  Google Scholar 

Agarwal UP, Ralph SA, Baez C, Reiner RS (2021) Detection and quantitation of cellulose II by Raman spectroscopy. Cellulose 28(14):9069–9079. https://doi.org/10.1007/s10570-021-04124-x

Article  Google Scholar 

Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H (2021) Recent developments in nanocellulose-based aerogels inthermal applications: a review. ACS Nano 15(3):3849–3874.

Article  Google Scholar 

Allouss D, Essamlali Y, Amadine O, Chakir A, Zahouily M (2019) Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Adv 9:37858–37869. https://doi.org/10.1039/C9RA06450H

Article  ADS  Google Scholar 

Allouss D, Essamlali Y, Chakir A, Khadhar S, Zahouily M (2020) Effective removal of Cu(II) from aqueous solution over graphene oxide encapsulated carboxymethyl cellulose-alginate hydrogel microspheres: towards real wastewater treatment plants. Environ Sci Pollut Res 27:7476–7492. https://doi.org/10.1007/s11356-019-06950-w

Article  Google Scholar 

Anet FAL, O’Leary DJ (1992) The shielding tensor part II: Understanding its strange effect on relaxation. Concepts Magn Reson 4:35–52. https://doi.org/10.1002/cmr.1820040103

Article  Google Scholar 

Antzutkin ON, Shekar SC, Levitt MH (1995) Two-dimensional sideband separation in magic angle spinning NMR. J Magn Reson A 115:7–19. https://doi.org/10.1006/jmra.1995.1142

Article  ADS  Google Scholar 

Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of Recent Research into Cellulosic Whiskers, their Properties and their Application in Nanocomposite Field. Biomacromolecules 6:612– 626. https://doi.org/10.1021/bm0493685

Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. https://doi.org/10.1021/bm049300p

Article  Google Scholar 

Beckmann PA (1988) Spectral densities and nuclear spin relaxation in solids. Phys Rep 171:85–128. https://doi.org/10.1016/0370-1573(88)90073-7

Article  ADS  Google Scholar 

Bergenstrahle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595. https://doi.org/10.1021/jp074641t

Article  Google Scholar 

Beriashvili D, Zhou J, Liu Y, Folkers GE, Baldus M (2024) Cellular applications of DNP solid-sate NMR-state of the Art and a look to the future. Chemistry- Eur J 30:e202400323–e202400321. https://doi.org/10.1002/chem.202400323

Article  Google Scholar 

Berruyer P, Gericke M, Moutzouri P, Jakobi D, Bardet M, Karlson L, Schantz S, Heinze T, Emsley L (2021) Advanced characterization of regioselectively substituted Methylcellulose model compounds by DNP enhanced solid-state NMR spectroscopy. https://doi.org/10.1016/j.carbpol.2021.117944. Carbohydrate Polymers262:117944

Berruyer P, Moutzouri P, Gericke M, Jakobi D, Bardet M, Heinze T, Karlson L, Schantz S, Emsley L (2022) Spatial distribution of functional groups in cellulose ethers by DNP-Enhanced Solid-State NMR spectroscopy. Macromolecules 55:2952–2958. https://doi.org/10.1021/acs.macromol.2c00061

Article  ADS  Google Scholar 

Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effect in nuclear magnetic resonance absorption. Phys Rev 73:679–715. https://doi.org/10.1103/PhysRev.73.679

Article  ADS  Google Scholar 

Bowie BT, Chase DB, Griffiths PR, DuPont (2000) Factors affecting the performance of Bench—Top Raman spectrometers. Part II: effect of sample. Appl Spectrosc 54(6):200A–207A. https://doi.org/10.1366/0003702001950175

Article  ADS  Google Scholar 

Boy R, Narayanan G, Kotek R (2018) Formation of cellulose and protein blend biofibers. In: Lucia L, Ayoub A (eds) Polysaccharide-Based fibers and composites: chemical and engineering fundamentals and industrial applications. Springer International Publishing, p 77. DOI: https://doi.org/10.1007/978-3-319-56596-5_5.

Buffiere J, Balogh-Michels Z, Borrega M, Geiger T, Zimmermann T, Sixta H (2017) The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydr Polym 178:48–56. https://doi.org/10.1016/j.carbpol.2017.09.028

Article  Google Scholar 

Chakrabarty A, Teramoto Y (2018) Recent advances in nanocellulose composites with polymers: A guide for choosing partners and how to incorporate them. Polymers 10:517. https://doi.org/10.3390/polym10050517

Article  Google Scholar 

Chen R, Feng D, Chen G, Chen X, Hong W (2021a) Re-printablechiral photonic paper with invisible patterns andtunable wettability. Adv Funct Mater 31(16):2009916. https://doi.org/10.1002/adfm20200 9916

Article  Google Scholar 

Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K (2021b) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv Mater 33(11):2005569. https://doi.org/10.1002/adma20200 5569

Article  Google Scholar 

Connor TM (1964) Distributions of correlation times and their effect on the comparison of molecular motions derived from nuclear spin-lattice and dielectric relaxation. Trans Faraday Soc 60:1574–1591. https://doi.org/10.1039/TF9646001574

Article  Google Scholar 

Dais P, Spyros A (1995) 13 C nuclear magnetic relaxation and local dynamics of synthetic polymers in dilute solution and in the bulk state. Prog Nucl Magn Reson Spectrosc 27:555–633. https://doi.org/10.1016/0079-6565(95)01014-9

Article  Google Scholar 

Dardari O, Amadine O, Sair S, Ousaleh HA, Essamlali Y, El Idrissi A, Aboulhrouz S, Danoun K, Maati H, Zahouily M (2024) Cellulose nanocrystal stabilized copper nanoparticles for grafting phase change materials with high thermal conductivity. J Energy Storage 79:110182. https://doi.org/10.1016/j.est.2023.110182

Article  Google Scholar 

Dassanayake RS, Dissanayake N, Fierro JS, Abidi N, Quitevis EL, Boggavarappu K, Thalangamaarachchige VD (2023) Characterization of cellulose nanocrystals by current spectroscopic techniques. Appl Spectrosc Rev 58(3):180–205. https://doi.org/10.1080/05704928.2021.1951283

Article  ADS  Google Scholar 

Deligey F, Frank MA, Cho SH, Kirui A, Mentink-Vigier F, Swulius MT, Tracy Nixon B, Wang T (2022) Structure of In Vitro-Synthesized Cellulose Fibrils Viewed by Cryo-Electron Tomography and 13 C Natural-Abundance Dynamic Nuclear Polarization Solid-State NMR. Biomacromolecules 23(6):2290–2301. https://doi.org/10.1021/acs.biomac.1c01674

Dey KK, Ghosh M (2020) Understanding the effect of deacetylation on Chitin by measuring chemical shift anisotropy tensor and spin lattice relaxation time. Chem Phys Lett 738:136782. https://doi.org/10.1016/j.cplett.2019.136782

Article  Google Scholar 

Dey KK, Ghosh M (2022) Understanding the effect of an anionic Side-Chain on the nuclear spin dynamics of a polysaccharide. Cellulose 29:1381–1392. https://link.springer.com/article/https://doi.org/10.1007/s10570-021-04394-5

Article  Google Scholar 

Dey KK, Ghosh M (2024) Interrelationship between solubility and nuclear spin-lattice relaxation time in cellulose derivatives with solid-state NMR. Cellulose 31:7905–7924. https://doi.org/10.1007/s10570-024-06109-y

Article  Google Scholar 

Dey KK, Gayen S, Ghosh M (2021) Structure and dynamics of sodium alginate as elucidated by chemical shift anisotropy and site-specific spin–lattice relaxation time measurements. Eur Biophys J 50(7):963–977. https://doi.org/10.1007/s00249-021-01559-9

Article  Google Scholar 

Ding Q, Han W, Li X, Jiang Y, Zhao C (2020) New insights into the auto fluorescence properties of cellulose/nanocellulose. Sci Rep 10(1):21387. https://doi.org/10.1038/s41598-020-78480-2

Article  ADS  Google Scholar 

Dixon WT (1982) Spinning-sideband-free and spinning-sideband only NMR spectra in spinning samples. J Chem Phys 77:1800–1809. https://doi.org/10.1063/1.444076

Article  ADS  Google Scholar 

Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. https://doi.org/10.1007/s10853-009-3874-0

Article  ADS  Google Scholar 

El Allaoui B, Chakhtouna H, Zari N, Benzeid H, Qaiss A el, kacem, Bouhfid R (2023) Superhydrophobicalkylsilane functionalized cellulose beads for efficient oil/ water separation. J Water Process Eng 54:104015. https://doi.org/10.1016/j.jwpe.2023.104015

El Nokab MEH (2020) Use of Solid-State NMR spectroscopy for investigating Polysaccharide-Based hydrogels: A review. Carbohydr Polym 240:116276. https://doi.org/10.1016/j.carbpol.2020.116276

Article  Google Scholar 

El Nokab MEH, Lasorsa A, Sebakhy KO, Picchioni F, van der Wel PCA (2022) Solid-State NMR Spectroscopy Insights for Resolving Different Water Pools in Alginate Hydrogels. Food Hydrocoll 127:107500. https://doi.org/10.1016/j.foodhyd.2022.107500

Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem Eur J 7(9):1831–1835. https://doi.org/10.1002/1521-3765

Article  Google Scholar 

French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

Article  Google Scholar 

French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609. https://doi.org/10.1007/s10570-017-1450-3

Article  Google Scholar 

French AD, Cintro´n MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

Article  Google Scholar 

Comments (0)

No login
gif