Alyami EM, Rizzo AA, Beuning PJ, Korzhnev DM (2017) NMR resonance assignments for the N-terminal domain of the δ subunit of the E. coli γ clamp loader complex. Biomol NMR Assign 11:169–173
Audin MJ, Dorn G, Fromm SA, Reiss K, Schutz S, Vorlander MK, Sprangers R (2013) The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew Chem Int Ed Engl 52:8312–8316
Azatian SB, Canny MD, Latham MP (2023) Three segment ligation of a 104 kda multi-domain protein by SrtA and OaAEP1. J Biomol NMR 77:25–37
Berjanskii MV, Wishart DS (2008) Application of the random coil index to studying protein flexibility. J Biomol NMR 40:31–48
Beyer A (1997) Sequence analysis of the AAA protein family. Protein Sci 6:2043–2058
Bullard JM, Pritchard AE, Song M-S, Glover BP, Wieczorek A, Chen J, Janjic N, McHenry CS (2002) A three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta’ and assembles into the DnaX complex. J Biol Chem 277:13246–13256
Craft DL, Schuyler AD (2023) Nus-tool: A unified program for generating and analyzing sample schedules for nonuniformly sampled NMR experiments. J Magn Reson 352:107458
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293
Frueh DP (2014) Practical aspects of NMR signal assignment in larger and challenging proteins. Prog Nucl Magn Reson Spectrosc 78:47–75
Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769
Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of val, leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374
Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J (1997) Crystal structure of the δ′ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91:335–345
Hingorani MM, O’Donnell M (1998) ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J Biol Chem 273:24550–24563
Hingorani MM, Bloom LB, Goodman MF, O’Donnell M (1999) Division of labor–sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA. EMBO J 18:5131–5144
Jeruzalmi D, O’Donnell M, Kuriyan J (2001a) Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106:429–441
Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O’Donnell M, Kuriyan J (2001b) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106:417–428
Johnson A, O’Donnell M (2003) Ordered ATP hydrolysis in the gamma complex clamp loader AAA + machine. J Biol Chem 278:14406–14413
Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514
Kazmirski SL, Podobnik M, Weitze TF, O’Donnell M, Kuriyan J (2004) Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Proc Natl Acad Sci USA 101:16750–16755
Kelch BA (2016) Review: the Lord of the rings: structure and mechanism of the sliding clamp loader. Biopolymers 105:532–546
Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2012) Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 10:34
Kelman Z (1998) Devoted to the lagging strand_the Chi subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J 17:2436–2449
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA (2024) Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication. J Biol Chem 300:107166
Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327
Leu FP, O’Donnell M (2001) Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 276:47185–47194
Leu FP, Hingorani MM, Turner J, O’Donnell M (2000) The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli. J Biol Chem 275:34609–34618
Lim S, Mahdi S, Beuning PJ, Korzhnev DM (2022) ILV Methyl NMR resonance assignments of the 81 kDa E. coli β-clamp. Biomol NMR Assign 16:317–323
Liu D, Xu R, Cowburn D (2009) Segmental isotopic labeling of proteins for nuclear magnetic resonance. Methods Enzymol 462:151–175
Maciejewski MW, Schuyler AD, Gryk MR, Moraru II, Romero PR, Ulrich EL, Eghbalnia HR, Livny M, Delaglio F, Hoch JC (2017) NMRbox: A resource for biomolecular NMR computation. Biophys J 112:1529–1534
Mahdi S, Bezsonova I, Beuning PJ, Korzhnev DM (2021) NMR resonance assignments for the nucleotide binding domains of the E. coli clamp loader complex γ subunit. Biomol NMR Assign 15:281–285
Mahdi S, Lim S, Bezsonova I, Beuning PJ, Korzhnev DM (2024) The backbone NMR resonance assignments of the stabilized E. coli β clamp. Biomol NMR Assign 18:293–297
Maki S, Kornberg A (1988) DNA polymerase III holoenzyme of Escherichia coli. I. Purification and distinctive functions of subunits Tau and gamma, the DnaZX gene products. J Biol Chem 263:6547–6554
Naktinis V, Onrust R, Fang L, O’Donnell M (1995) Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle.: II. Intermediate complex between the clamp loader and its clamp. J Biol Chem 270:13358–13365
Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43
Newcomb ESP, Douma LG, Morris LA, Bloom LB (2022) The Escherichia coli clamp loader rapidly remodels SSB on DNA to load clamps. Nucleic Acids Res 50:12872–12884
Park AY, Jergic S, Politis A, Ruotolo BT, Hirshberg D, Jessop LL, Beck JL, Barsky D, O’Donnell M, Dixon NE, Robinson CV (2010) A single subunit directs the assembly of the Escherichia coli DNA sliding clamp loader. Structure 18:285–292
Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371
Pervushin KV, Wider G, Riek R, Wüthrich K (1999) The 3D NOESY-[1H,15N, 1H]-ZQ-TROSY NMR experiment with diagonal peak suppression. Proc Natl Acad Sci USA 96:9607–9612
Podobnik M, Weitze TF, O’Donnell M, Kuriyan J (2003) Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Structure 11:253–263
Pritchard AE, Dallmann HG, Glover BP, McHenry CS (2000) A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ′ with DnaX4 forms DnaX3δδ′. EMBO J 19:6536–6545
Salzmann M, Wider G, Pervushin K, Senn H, Wüthrich K (1999) TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J Am Chem Soc 121:844–848
Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158
Schütz S, Sprangers R (2020) Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. Prog Nucl Magn Reson Spectrosc 116:56–84
Sever AIM, Ahmed R, Rößler P, Kay LE (2025) Solution NMR goes big: atomic resolution studies of protein components of molecular machines and phase-separated condensates. Curr Opin Struct Biol 90:102976
Comments (0)