An optimized C single-quantum CPMG relaxation dispersion experiment for investigating microsecond-to-millisecond timescale dynamics in large proteins

Alderson TR, Kay LE (2021) NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell. https://doi.org/10.1016/j.cell.2020.12.034

Article  Google Scholar 

Baldwin AJ, Hansen DF, Vallurupalli P, Kay LE (2009) Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. J Am Chem Soc. https://doi.org/10.1021/ja903896p

Article  Google Scholar 

Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science. https://doi.org/10.1126/science.1130258

Article  Google Scholar 

Borneman TW, Hürlimann MD, Cory DG (2010) Application of optimal control to CPMG refocusing pulse design. J Magn Reson. https://doi.org/10.1016/j.jmr.2010.09.003

Article  Google Scholar 

Bouvignies G (2024) ChemEx: NMR Chemical Exchange Analysis Tool. GitHub. https://github.com/gbouvignies/ChemEx.

Bouvignies G, Kay LE (2012) A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding. J Biomol NMR 53:303–310. https://doi.org/10.1007/s10858-012-9640-7

Article  Google Scholar 

Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Vernon RM, Dahlquist FW, Baker D, Kay LE (2011) Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature. https://doi.org/10.1038/nature10349

Article  Google Scholar 

Bouvignies G, Vallurupalli P, Kay LE (2014) Visualizing side chains of invisible protein conformers by solution NMR. J Mol Biol. https://doi.org/10.1016/j.jmb.2013.10.041

Article  Google Scholar 

Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. https://doi.org/10.1103/PhysRev.94.630

Article  Google Scholar 

Chen L, Balabanidou V, Remeta DP, Minetti CASA, Portaliou AG, Economou A, Kalodimos CG (2011) Structural instability tuning as a regulatory mechanism in protein-protein interactions. Mol Cell. https://doi.org/10.1016/j.molcel.2011.09.022

Article  Google Scholar 

Cui Y, Jin Y, Hou Y, Han X, Cao H, Kay LE, Yuwen T (2024) Optimization of TROSY- and anti-TROSY-based 15N CPMG relaxation dispersion experiments through phase cycling. J Magn Reson. https://doi.org/10.1016/j.jmr.2024.107629

Article  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. https://doi.org/10.1007/Bf00197809

Article  Google Scholar 

Eriksson AE, Baase WA, Wozniak JA, Matthews BW (1992) A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature. https://doi.org/10.1038/355371a0

Article  Google Scholar 

Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature. https://doi.org/10.1038/nature10577

Article  Google Scholar 

Guenneugues M, Berthault P, Desvaux H (1999) A method for determining B1 field inhomogeneity. Are the biases assumed in heteronuclear relaxation experiments usually underestimated? J Magn Reson. https://doi.org/10.1006/jmre.1998.1590

Article  Google Scholar 

Gullion T, Baker DB, Conradi MS (1990) New, compensated Carr-Purcell sequences. J Magn Reson. https://doi.org/10.1016/0022-2364(90)90331-3

Article  Google Scholar 

Hansen DF, Feng H, Zhou Z, Bai Y, Kay LE (2009a) Selective characterization of microsecond motions in proteins by NMR relaxation. J Am Chem Soc. https://doi.org/10.1021/ja906842s

Article  Google Scholar 

Hansen DF, Vallurupalli P, Kay LE (2008) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B. https://doi.org/10.1021/jp074793o

Article  Google Scholar 

Hansen DF, Vallurupalli P, Kay LE (2009b) Measurement of methyl group motional parameters of invisible, excited protein states by NMR spectroscopy. J Am Chem Soc. https://doi.org/10.1021/ja903897e

Article  Google Scholar 

Hürlimann MD (2001) Carr–Purcell sequences with composite pulses. J Magn Reson. https://doi.org/10.1006/jmre.2001.2370

Article  Google Scholar 

Igumenova TI, Brath U, Akke M, Palmer AG (2007) Characterization of chemical exchange using residual dipolar coupling. J Am Chem Soc. https://doi.org/10.1021/ja0761636

Article  Google Scholar 

Jiang B, Yu B, Zhang X, Liu M, Yang D (2015) A 15N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection. J Magn Reson. https://doi.org/10.1016/j.jmr.2015.05.003

Article  Google Scholar 

Jiang Y, Rossi P, Kalodimos CG (2019) Structural basis for client recognition and activity of Hsp40 chaperones. Science. https://doi.org/10.1126/science.aax1280

Article  Google Scholar 

Jin Y, Cui Y, Yuwen T (2025) NMR methods for investigating functionally relevant biomolecular dynamics. Magn Reson Lett. https://doi.org/10.1016/j.mrl.2025.200195

Article  Google Scholar 

Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685. https://doi.org/10.1073/pnas.0408930102

Article  ADS  Google Scholar 

Kay LE, Bull TE (1992) Heteronuclear transverse relaxation in AMX, AX2, and AX3 spin systems. J Magn Reson. https://doi.org/10.1016/0022-2364(92)90218-V

Article  Google Scholar 

Kay LE, Torchia DA (1991) The effects of dipolar cross-correlation on 13C methyl-carbon T1, T2, and NOE measurements in macromolecules. J Magn Reson. https://doi.org/10.1016/0022-2364(91)90167-R

Article  Google Scholar 

Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta. https://doi.org/10.1016/j.bbapap.2010.10.012

Article  Google Scholar 

Kontaxis G, Bax A (2001) Multiplet component separation for measurement of methyl 13C–1H dipolar couplings in weakly aligned proteins. J Biomol NMR 20:77–82. https://doi.org/10.1023/A:1011280529850

Article  Google Scholar 

Koroleva VDM, Mandal S, Song Y, Hürlimann MD (2013) Broadband CPMG sequence with short composite refocusing pulses. J Magn Reson. https://doi.org/10.1016/j.jmr.2013.01.006

Article  Google Scholar 

Korzhnev DM, Kloiber K, Kanelis V, Tugarinov V, Kay LE (2004) Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J Am Chem Soc. https://doi.org/10.1021/ja039587i

Article  Google Scholar 

Korzhnev DM, Tischenko EV, Arseniev AS (2000) Off-resonance effects in 15N T2 CPMG measurements. J Biomol NMR. https://doi.org/10.1023/A:1008348827208

Article  Google Scholar 

Kumar GS, Clarkson MW, Kunze MBA, Granata D, Wand AJ, Lindorff-Larsen K, Page R, Peti W (2018) Dynamic activation and regulation of the mitogen-activated protein kinase p38. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1721441115

Article  Google Scholar 

Li Y, Rance M, Palmer AG (2014) Rotation operator propagators for time-varying radiofrequency pulses in NMR spectroscopy: applications to shaped pulses and pulse trains. J Magn Reson. https://doi.org/10.1016/j.jmr.2014.09.001

Article  Google Scholar 

Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc. https://doi.org/10.1021/ja983961a

Article  Google Scholar 

Lundström P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE (2007) A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. J Biomol NMR. https://doi.org/10.1007/s10858-007-9149-7

Article  Google Scholar 

Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J Magn Reson. https://doi.org/10.1016/0022-2364(89)90152-2

Article  Google Scholar 

Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. https://doi.org/10.1063/1.1716296

Article  Google Scholar 

Mittermaier A, Kay LE (2001) χ1 torsion angle dynamics in proteins from dipolar couplings. J Am Chem Soc. https://doi.org/10.1021/ja010595d

Article  Google Scholar 

Mulder FAA, Hon B, Mittermaier A, Dahlquist FW, Kay LE (2002) Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J Am Chem Soc. https://doi.org/10.1021/ja0119806

Article  Google Scholar 

Mulder FAA, Mittermaier A, Hon B, Dahlquist FW, Kay LE (2001a) Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol. https://doi.org/10.1038/nsb1101-932

Article  Google Scholar 

Comments (0)

No login
gif