Analyzing sub-millisecond timescale protein dynamics using eCPMG experiments

Abergel D, Palmer AG (2004) Approximate solutions of the Bloch–McConnell equations for two-site chemical exchange. Chemphyschem 5:787–793. https://doi.org/10.1002/cphc.200301051

Article  Google Scholar 

Adhada S, Sarma S (2024) Slow conformational exchange between partially folded and near-native states of ubiquitin: evidence for a multistate folding model. Biochemistry. https://doi.org/10.1021/acs.biochem.4c00321

Article  Google Scholar 

Baldwin AJ (2014) An exact solution for R2eff in CPMG experiments in the case of two site chemical exchange. J Magn Reson 244:114–124

Article  ADS  Google Scholar 

Ban D, Funk M, Gulich R, Egger D, Sabo TM, Walter K, Fenwick RB, Giller K, De Groot BL, Lange O, Grubmüller H, Salvatella X, Wolf M, Loidl A, Kree R, Becker S, Lakomek NA, Lee D, Lunkenheimer P, Griesinger C (2011) Kinetics of conformational sampling in ubiquitin. Angew Chem Int Ed 50:11437–11440. https://doi.org/10.1002/anie.201105086

Article  Google Scholar 

Ban D, Gossert AD, Giller K, Becker S, Lee D, Griensinger C (2012) Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead. J Magn Reson 221:1–4. https://doi.org/10.1016/j.jmr.2012.05.005

Article  ADS  Google Scholar 

Ban D, Mazur A, Carneiro G, Sabo M, Giller TM, Koharudin K, Becker LMI, Gronenborn S, Lee AM, Griensinger D C (2013a) Enhanced accuracy of kinetic information from CT-CPMG experiments by transverse rotating-frame spectroscopy. J Biomol NMR 57:73–82. https://doi.org/10.1007/s10858-013-9769-z

Article  Google Scholar 

Ban D, Sabo T, Griesinger C, Lee D (2013b) Measuring dynamic and kinetic information in the previously inaccessible supra-tc window of nanoseconds to microseconds by solution NMR spectroscopy. Molecules 18:11904–11937. https://doi.org/10.3390/molecules181011904

Article  Google Scholar 

Ban D, Smith CA, De Groot BL, Lee D, Griensinger C (2017) Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Arch Biochem Biophys 628:81–91. https://doi.org/10.1016/j.abb.2017.05.016

Article  Google Scholar 

Beckwith MA, Erazo-Colon T, Johnson BA (2021) Ring NMR dynamics: software for analysis of multiple NMR relaxation experiments. J Biomol NMR 75:9–23. https://doi.org/10.1007/s10858-020-00350-w

Article  Google Scholar 

Bieri M, Gooley PR (2011) Automated NMR relaxation dispersion data analysis using NESSY. BMC Bioinformatics 12:421. https://doi.org/10.1186/1471-2105-12-421

Article  Google Scholar 

Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642. https://doi.org/10.1126/science.1130258

Article  ADS  Google Scholar 

Bouvignies G (2024) ChemEx (https://github.com/gbouvignies/ChemEx)

Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Dahlquist FW, Baker D, Kay EL (2011) Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477:111–114. https://doi.org/10.1038/nature10349

Article  ADS  Google Scholar 

Carver JP, Richards RE (1972) A general two-site solution for the chemical exchange produced dependence of T2 upon the carr-Purcell pulse separation. J Magn Reson 6(1):89–105. https://doi.org/10.1016/0022-2364(72)90090-X

Article  ADS  Google Scholar 

Chakrabarti KS, Agafonov RV, Pontiggia F, Otten R, Higgins MK, Schertier GFX, Oprian DD, Kern D (2016) Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis. Cell Rep 14:32–42. https://doi.org/10.1016/j.celrep.2015.12.010

Article  Google Scholar 

Chakrabarti KS, Li J, Das R, Byrd RA (2017) Conformational dynamics and allostery in E2:E3 interactions drive ubiquitination: gp78 and Ube2g2. Structure 25:794–805e5. https://doi.org/10.1016/j.str.2017.03.016

Article  Google Scholar 

Chakrabarti KS, Olsson S, Pratihar S, Giller K, Overkamp K, Lee KO, Gapsys V, Ryu KS, De Groot BL, Noé F, Becker S, Lee D, Weikl TR (2022) A litmus test for classifying recognition mechanisms of transiently binding proteins. Nat Commun 13:3792. https://doi.org/10.1038/s41467-022-31374-5

Article  ADS  Google Scholar 

Chao F-A, Byrd RA (2017) Application of geometric approximation to the CPMG experiment: two- and three-site exchange. J Magn Reson 277:8–14. https://doi.org/10.1016/j.jmr.2017.01.022

Article  ADS  Google Scholar 

Chao F-A, Byrd RA (2024) Existence of singularities in NMR relaxation dispersion profiles: implications for hidden dynamics. J Am Chem Soc 146:24467–24475. https://doi.org/10.1021/jacs.4c06720

Article  ADS  Google Scholar 

Chao F-A, Zhang Y, Byrd RA (2021) Theoretical classification of exchange geometries from the perspective of NMR relaxation dispersion. J Magn Reson 328:107003. https://doi.org/10.1016/j.jmr.2021.107003

Article  Google Scholar 

Chatterjee SD, Ubbink M, van Ingen H (2018) Removal of slow-pulsing artifacts in in-phase 15 N relaxation dispersion experiments using broadband 1H decoupling. J Biomol NMR 71:69–77

Article  Google Scholar 

Davis DG, Perlman ME, London RE (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1ρ and T2 (CPMG) methods. J Magn Reson B 104:266–275. https://doi.org/10.1006/jmrb.1994.1084

Article  ADS  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6. https://doi.org/10.1007/BF00197809

Eykyn TR, Elliott SJ, Kuchel PW (2021) Extended bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems. Magn Reson 2:421–446. https://doi.org/10.5194/mr-2-421-2021

Article  Google Scholar 

Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature 480:268–272. https://doi.org/10.1038/nature10577

Article  ADS  Google Scholar 

Gladkova C, Schubert AF, Wagstaff JL, Pruneda JN, Freund SMV, Komander D (2017) An invisible ubiquitin conformation is required for efficient phosphorylation by PINK 1. EMBO J 36:3555–3572. https://doi.org/10.15252/embj.201797876

Article  Google Scholar 

Hansen DF, Vallurupalli P, Kay LE (2008a) An improved 15 N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904. https://doi.org/10.1021/jp074793o

Article  Google Scholar 

Hansen DF, Vallurupalli P, Lundström P et al (2008b) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc 130:2667–2675

Article  ADS  Google Scholar 

Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916. https://doi.org/10.1038/nature06407

Article  ADS  Google Scholar 

Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248. https://doi.org/10.1023/A:1022851228405

Article  Google Scholar 

Ishima R, Wingfield PT, Stahl SJ, Kaufman JD, Torchia DA (1998) Using amide 1H and 15N transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J Am Chem Soc 120:10534–10542

Article  ADS  Google Scholar 

Khandave NP, Sekhar A, Vallurupalli P (2023) Studying micro to millisecond protein dynamics using simple amide 15 N CEST experiments supplemented with major-state R2 and visible peak-position constraints. J Biomol NMR 77:165–181. https://doi.org/10.1007/s10858-023-00419-2

Article  Google Scholar 

Kleckner IR, Foster MP (2012) GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data. J Biomol NMR 52:11–22

Article  Google Scholar 

Korzhnev DM, Neudecker P, Mittermaier A, Orekhov VY, Kay LE (2005) Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant. J Am Chem Soc 127:15602–15611

Article  ADS  Google Scholar 

Korzhnev DM, Religa TL, Lundström P et al (2007) The folding pathway of an FF domain: characterization of an on-pathway intermediate state under folding conditions by 15 N, 13Cα and 13 C-methyl relaxation dispersion and 1H/2H-exchange NMR spectroscopy. J Mol Biol 372:497–512. https://doi.org/10.1016/j.jmb.2007.06.012

Article  Google Scholar 

Koss H, Rance M, Palmer AG (2020) Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange. J Magn Reson 321:106846. https://doi.org/10.1016/j.jmr.2020.106846

Article  Google Scholar 

Kovrigin EL, Kempf JG, Grey MJ, Loria JP (2006) Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements. J Magn Reson 180:93–104. https://doi.org/10.1016/j.jmr.2006.01.010

Article  ADS  Google Scholar 

Lange OF, Lakomek N-A, Farès C, Schröder GF, Walter KF, Becker S, Meiler J, Grubmüller H, Griesinger C, De Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475.

Comments (0)

No login
gif