Abergel D, Palmer AG (2004) Approximate solutions of the Bloch–McConnell equations for two-site chemical exchange. Chemphyschem 5:787–793. https://doi.org/10.1002/cphc.200301051
Adhada S, Sarma S (2024) Slow conformational exchange between partially folded and near-native states of ubiquitin: evidence for a multistate folding model. Biochemistry. https://doi.org/10.1021/acs.biochem.4c00321
Baldwin AJ (2014) An exact solution for R2eff in CPMG experiments in the case of two site chemical exchange. J Magn Reson 244:114–124
Ban D, Funk M, Gulich R, Egger D, Sabo TM, Walter K, Fenwick RB, Giller K, De Groot BL, Lange O, Grubmüller H, Salvatella X, Wolf M, Loidl A, Kree R, Becker S, Lakomek NA, Lee D, Lunkenheimer P, Griesinger C (2011) Kinetics of conformational sampling in ubiquitin. Angew Chem Int Ed 50:11437–11440. https://doi.org/10.1002/anie.201105086
Ban D, Gossert AD, Giller K, Becker S, Lee D, Griensinger C (2012) Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead. J Magn Reson 221:1–4. https://doi.org/10.1016/j.jmr.2012.05.005
Ban D, Mazur A, Carneiro G, Sabo M, Giller TM, Koharudin K, Becker LMI, Gronenborn S, Lee AM, Griensinger D C (2013a) Enhanced accuracy of kinetic information from CT-CPMG experiments by transverse rotating-frame spectroscopy. J Biomol NMR 57:73–82. https://doi.org/10.1007/s10858-013-9769-z
Ban D, Sabo T, Griesinger C, Lee D (2013b) Measuring dynamic and kinetic information in the previously inaccessible supra-tc window of nanoseconds to microseconds by solution NMR spectroscopy. Molecules 18:11904–11937. https://doi.org/10.3390/molecules181011904
Ban D, Smith CA, De Groot BL, Lee D, Griensinger C (2017) Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Arch Biochem Biophys 628:81–91. https://doi.org/10.1016/j.abb.2017.05.016
Beckwith MA, Erazo-Colon T, Johnson BA (2021) Ring NMR dynamics: software for analysis of multiple NMR relaxation experiments. J Biomol NMR 75:9–23. https://doi.org/10.1007/s10858-020-00350-w
Bieri M, Gooley PR (2011) Automated NMR relaxation dispersion data analysis using NESSY. BMC Bioinformatics 12:421. https://doi.org/10.1186/1471-2105-12-421
Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642. https://doi.org/10.1126/science.1130258
Bouvignies G (2024) ChemEx (https://github.com/gbouvignies/ChemEx)
Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, Bah A, Dahlquist FW, Baker D, Kay EL (2011) Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477:111–114. https://doi.org/10.1038/nature10349
Carver JP, Richards RE (1972) A general two-site solution for the chemical exchange produced dependence of T2 upon the carr-Purcell pulse separation. J Magn Reson 6(1):89–105. https://doi.org/10.1016/0022-2364(72)90090-X
Chakrabarti KS, Agafonov RV, Pontiggia F, Otten R, Higgins MK, Schertier GFX, Oprian DD, Kern D (2016) Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis. Cell Rep 14:32–42. https://doi.org/10.1016/j.celrep.2015.12.010
Chakrabarti KS, Li J, Das R, Byrd RA (2017) Conformational dynamics and allostery in E2:E3 interactions drive ubiquitination: gp78 and Ube2g2. Structure 25:794–805e5. https://doi.org/10.1016/j.str.2017.03.016
Chakrabarti KS, Olsson S, Pratihar S, Giller K, Overkamp K, Lee KO, Gapsys V, Ryu KS, De Groot BL, Noé F, Becker S, Lee D, Weikl TR (2022) A litmus test for classifying recognition mechanisms of transiently binding proteins. Nat Commun 13:3792. https://doi.org/10.1038/s41467-022-31374-5
Chao F-A, Byrd RA (2017) Application of geometric approximation to the CPMG experiment: two- and three-site exchange. J Magn Reson 277:8–14. https://doi.org/10.1016/j.jmr.2017.01.022
Chao F-A, Byrd RA (2024) Existence of singularities in NMR relaxation dispersion profiles: implications for hidden dynamics. J Am Chem Soc 146:24467–24475. https://doi.org/10.1021/jacs.4c06720
Chao F-A, Zhang Y, Byrd RA (2021) Theoretical classification of exchange geometries from the perspective of NMR relaxation dispersion. J Magn Reson 328:107003. https://doi.org/10.1016/j.jmr.2021.107003
Chatterjee SD, Ubbink M, van Ingen H (2018) Removal of slow-pulsing artifacts in in-phase 15 N relaxation dispersion experiments using broadband 1H decoupling. J Biomol NMR 71:69–77
Davis DG, Perlman ME, London RE (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1ρ and T2 (CPMG) methods. J Magn Reson B 104:266–275. https://doi.org/10.1006/jmrb.1994.1084
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6. https://doi.org/10.1007/BF00197809
Eykyn TR, Elliott SJ, Kuchel PW (2021) Extended bloch–McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems. Magn Reson 2:421–446. https://doi.org/10.5194/mr-2-421-2021
Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature 480:268–272. https://doi.org/10.1038/nature10577
Gladkova C, Schubert AF, Wagstaff JL, Pruneda JN, Freund SMV, Komander D (2017) An invisible ubiquitin conformation is required for efficient phosphorylation by PINK 1. EMBO J 36:3555–3572. https://doi.org/10.15252/embj.201797876
Hansen DF, Vallurupalli P, Kay LE (2008a) An improved 15 N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904. https://doi.org/10.1021/jp074793o
Hansen DF, Vallurupalli P, Lundström P et al (2008b) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc 130:2667–2675
Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916. https://doi.org/10.1038/nature06407
Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248. https://doi.org/10.1023/A:1022851228405
Ishima R, Wingfield PT, Stahl SJ, Kaufman JD, Torchia DA (1998) Using amide 1H and 15N transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J Am Chem Soc 120:10534–10542
Khandave NP, Sekhar A, Vallurupalli P (2023) Studying micro to millisecond protein dynamics using simple amide 15 N CEST experiments supplemented with major-state R2 and visible peak-position constraints. J Biomol NMR 77:165–181. https://doi.org/10.1007/s10858-023-00419-2
Kleckner IR, Foster MP (2012) GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data. J Biomol NMR 52:11–22
Korzhnev DM, Neudecker P, Mittermaier A, Orekhov VY, Kay LE (2005) Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant. J Am Chem Soc 127:15602–15611
Korzhnev DM, Religa TL, Lundström P et al (2007) The folding pathway of an FF domain: characterization of an on-pathway intermediate state under folding conditions by 15 N, 13Cα and 13 C-methyl relaxation dispersion and 1H/2H-exchange NMR spectroscopy. J Mol Biol 372:497–512. https://doi.org/10.1016/j.jmb.2007.06.012
Koss H, Rance M, Palmer AG (2020) Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange. J Magn Reson 321:106846. https://doi.org/10.1016/j.jmr.2020.106846
Kovrigin EL, Kempf JG, Grey MJ, Loria JP (2006) Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements. J Magn Reson 180:93–104. https://doi.org/10.1016/j.jmr.2006.01.010
Lange OF, Lakomek N-A, Farès C, Schröder GF, Walter KF, Becker S, Meiler J, Grubmüller H, Griesinger C, De Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475.
Comments (0)