Non-invasive brain stimulation: current and future applications in neurology

Boon, P. et al. A strategic neurological research agenda for Europe: towards clinically relevant and patient-centred neurological research priorities. Eur. J. Neurol. 31, e16171 (2024).

Article  PubMed  Google Scholar 

Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stam, C. J. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw. Neurosci. 8, 1–23 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Murphy, K. R. et al. A practical guide to transcranial ultrasonic stimulation from the IFCN-endorsed ITRUSST consortium. Clin. Neurophysiol. 171, 192–226 (2025).

Article  PubMed  Google Scholar 

Violante, I. R. et al. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat. Neurosci. 26, 1994–2004 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wessel, M. J. et al. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat. Neurosci. 26, 2005–2016 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vassiliadis, P. et al. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nat. Hum. Behav. 8, 1581–1598 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Beanato, E. et al. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. Sci. Adv. 10, eado4103 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang, C. et al. Transcranial temporal interference stimulation of the right globus pallidus in Parkinson’s disease. Mov. Disord. 40, 1061–1069 (2025).

Article  PubMed  Google Scholar 

Piao, Y. et al. Safety evaluation of employing temporal interference transcranial alternating current stimulation in human studies. Brain Sci. 12, 1194 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Vassiliadis, P. et al. Safety, tolerability and blinding efficiency of non-invasive deep transcranial temporal interference stimulation: first experience from more than 250 sessions. J. Neural Eng. 21, 024001 (2024).

Article  Google Scholar 

Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A. & Siebner, H. R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140, 4–19 (2016).

Article  PubMed  Google Scholar 

Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B. State-dependent effects of neural stimulation on brain function and cognition. Nat. Rev. Neurosci. 23, 459–475 (2022).

Article  PubMed  CAS  Google Scholar 

Hartz, S. M. et al. Assessing the clinical meaningfulness of slowing CDR-SB progression with disease-modifying therapies for Alzheimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 11, e70033 (2025).

Article  Google Scholar 

Wei, N. et al. Repetitive transcranial magnetic stimulation may be superior to drug therapy in the treatment of Alzheimer’s disease: a systematic review and Bayesian network meta-analysis. CNS Neurosci. Ther. 29, 2912–2924 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Koch, G. et al. The emerging field of non-invasive brain stimulation in Alzheimer’s disease. Brain 147, 4003–4016 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Terao, I. & Kodama, W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: a systematic review and network meta-analysis. Ageing Res. Rev. 94, 102203 (2024).

Article  PubMed  CAS  Google Scholar 

Šimko, P., Kent, J. A. & Rektorova, I. Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer’s disease? An updated meta-analysis. Clin. Neurophysiol. 144, 23–40 (2022).

Article  PubMed  Google Scholar 

Yang, T. et al. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res. Ther. 16, 140 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rektorová, I. Non-invasive stimulation for treating cognitive impairment in Alzheimer disease. Nat. Rev. Neurol. 20, 445–446 (2024).

Article  PubMed  Google Scholar 

Moussavi, Z. et al. Repetitive transcranial magnetic stimulation as a treatment for Alzheimer’s disease: a randomized placebo-controlled double-blind clinical trial. Neurotherapeutics 21, e00331 (2024).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin, H. et al. Effects of accelerated intermittent theta-burst stimulation in modulating brain of Alzheimer’s disease. Cereb. Cortex 34, bhae106 (2024).

Article  PubMed  Google Scholar 

Wu, X. et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: a randomized controlled trial. Brain Stimul. 15, 35–45 (2022).

Article  PubMed  Google Scholar 

Tang, N., Shu, W. & Wang, H.-N. Accelerated transcranial magnetic stimulation for major depressive disorder: a quick path to relief? Wiley Interdiscip. Rev. Cogn. Sci. 15, e1666 (2024).

Article  PubMed  Google Scholar 

Wu, X. et al. Effects of a periodic intermittent theta burst stimulation in Alzheimer’s disease. Gen. Psychiatr. 37, e101106 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Jones, D. T. et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain 139, 547–562 (2016).

Article  PubMed  Google Scholar 

Giorgio, J., Adams, J. N., Maass, A., Jagust, W. J. & Breakspear, M. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation. Neuron 112, 676–686.e4 (2024).

Article  PubMed  CAS  Google Scholar 

Krajcovicova, L., Marecek, R., Mikl, M. & Rektorova, I. Disruption of resting functional connectivity in Alzheimer’s patients and at-risk Subjects. Curr. Neurol. Neurosci. Rep. 14, 491 (2014).

Article  PubMed  Google Scholar 

Koch, G. et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage 169, 302–311 (2018).

Article  PubMed  Google Scholar 

Koch, G. et al. Precuneus magnetic stimulation for Alzheimer’s disease: a randomized, sham-controlled trial. Brain 145, 3776–3786 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Yao, Q. et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: a randomized clinical trial. Brain Stimul. 15, 910–920 (2022).

Article  PubMed  Google Scholar 

Chen, Y. et al. Integrated cerebellar radiomic-network model for predicting mild cognitive impairment in Alzheimer’s disease. Alzheimers Dement. 21, e14361 (2025).

Article  PubMed  CAS  Google Scholar 

Majdi, A., van Boekholdt, L., Sadigh-Eteghad, S. & Mc Laughlin, M. A systematic review and meta-analysis of transcranial direct-current stimulation effects on cognitive function in patients with Alzheimer’s disease. Mol. Psychiatry 27, 2000–2009 (2022).

Article 

Comments (0)

No login
gif