Acloque H, Ocaña OH, Matheu A, Rizzoti K, Wise C, Lovell-Badge R, Nieto MA (2011) Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev Cell 21(3):546–558. https://doi.org/10.1016/j.devcel.2011.07.005
Article PubMed PubMed Central CAS Google Scholar
Bagri KM, Oliveira LF, Pereira MG, Abreu JG, Mermelstein C (2022) The Wnt/beta-catenin pathway and cytoskeletal filaments are involved in the positioning, size, and function of lysosomes during chick myogenesis. Cells. https://doi.org/10.3390/cells11213402
Article PubMed PubMed Central Google Scholar
Biressi S, Molinaro M, Cossu G (2007) Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 308(2):281–293. https://doi.org/10.1016/j.ydbio.2007.06.00
Article PubMed CAS Google Scholar
Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985) Plasticity of the differentiated state. Science 230(4727):758–766. https://doi.org/10.1126/science.2414846
Article PubMed CAS Google Scholar
Brand-Saberi B, Christ B (2000) Evolution and development of distinct cell lineages derived from somites. Curr Top Dev Biol 48:1–42. https://doi.org/10.1016/s0070-2153(08)60753-x
Article PubMed CAS Google Scholar
CamargoKC GJR, Loddi MM, de Sordi R, Costa-Ayub CL, Soares MA (2016) MT1-MMP and its potential role in the vertebrate intestinal morphogenesis. Acta Histochem 118(7):729–735. https://doi.org/10.1016/j.acthis.2016.07.009
Cha MC, Purslow PP (2010) The activities of MMP-9 and total gelatinase respond differently to substrate coating and cyclic mechanical stretching in fibroblasts and myoblasts. Cell Biol Int 34(6):587–591. https://doi.org/10.1042/CBI20090096
Article PubMed CAS Google Scholar
Chal J, Pourquié O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Development. https://doi.org/10.1242/dev.151035
Article PubMed PubMed Central Google Scholar
Chellini F, Tani A, Parigi M, Palmieri F, Garella R, Zecchi-Orlandini S, Squecco R, Sassoli C (2023) HIF-1α/MMP-9 axis is required in the early phases of skeletal myoblast differentiation under normoxia condition in vitro. Cells 12(24):2851. https://doi.org/10.3390/cells12242851
Article PubMed PubMed Central CAS Google Scholar
Christensen S, Purslow PP (2016) The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: a review. Meat Sci 119:138–146. https://doi.org/10.1016/j.meatsci.2016.04.025
Article PubMed CAS Google Scholar
Costa ML, Jurberg AD, Mermelstein C (2021) The role of embryonic chick muscle cell culture in the study of skeletal myogenesis. Front Physiol 12:668600. https://doi.org/10.3389/fphys.2021.668600
Article PubMed PubMed Central Google Scholar
Couch CB, Strittmatter WJ (1983) Rat myoblast fusion requires metalloendoprotease activity. Cell. https://doi.org/10.1016/0092-8674(83)90516-0
Couch CB, Strittmatter WJ (1984) Specific blockers of myoblast fusion inhibit a soluble and not the membrane-associated metalloendoprotease in myoblasts. J Biol Chem 259(9):5396–5399
Article PubMed CAS Google Scholar
Cui N, Hu M, Khalil RA (2017) Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. https://doi.org/10.1016/bs.pmbts.2017.02.005
Article PubMed PubMed Central Google Scholar
Dali L, Gustin J, Perry K, Domingo CR (2002) Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos. Cells Tissues Organs. https://doi.org/10.1159/000064387
Dos Reis CA, de Miranda Soares MA, Gomes JR (2020) Expression of the matrix metalloproteinases 2 and 9 in the rat small intestine during intrauterine and postnatal life. Anat Rec (Hoboken). https://doi.org/10.1002/ar.24314
Duong TD, Erickson CA (2004) MMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn. https://doi.org/10.1002/dvdy.10465
El Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP (2000) In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res. https://doi.org/10.1006/excr.2000.4962
Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J (2021) Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. https://doi.org/10.1177/2041731420981339
Article PubMed PubMed Central Google Scholar
Fidler Y, Gomes JR (2023) Effects of a single dose of x-ray irradiation on MMP-9 expression and morphology of the cerebellum cortex of adult rats. Cerebellum 22(2):240–248. https://doi.org/10.1007/s12311-022-01386-4
Article PubMed CAS Google Scholar
Pourquié O (2004). The chick embryo: a leading model in somitogenesis studies. Mech Dev. https://doi.org/10.1016/j.mod.2004.05.002
Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda S, Ikeda S (2007). Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord 8:54. https://doi.org/10.1186/1471-2474-8-54
Gaglianone RB, Bloise FF, Ortiga-Carvalho TM, Quirico-Santos T, Costa ML, Mermelstein C (2020) Comparative study of calcium and calcium-related enzymes with differentiation markers in different ages and muscle types in mdx mice. Histol Histopathol. https://doi.org/10.14670/HH-18-145
Garcia P, Wang Y, Viallet J, Macek J, Jilkova Z (2021) The chicken embryo model: a novel and relevant model for immune-based studies. Front Immunol. https://doi.org/10.3389/fimmu.2021.791081
Article PubMed PubMed Central Google Scholar
Gomes JR, Omar NF, dos Santos NJ, Narvaes EA, Novaes PD (2011) Immunolocalization and activity of the MMP-9 and MMP-2 in odontogenic region of the rat incisor tooth after post shortening procedure. J Mol Histol. https://doi.org/10.1007/s10735-011-9318-6
Guérin CW, Holland PC (1995) Synthesis and secretion of matrix-degrading metalloproteases by human skeletal muscle satellite cells. Dev Dyn. https://doi.org/10.1002/aja.1002020109
Gus S, Huang Q, Sun C, Wen C, Yang N (2024) Transcriptomic and epigenomic insights into pectoral muscle fiber formation at the late embryonic development in pure chicken lines. Poultry Sci 103(8):103882. https://doi.org/10.1016/j.psj.2024.103882
Hirst CE, Marcelle C (2015) The avian embryo as a model system for skeletal myogenesis. Results Probl Cell Differ. https://doi.org/10.1007/978-3-662-44608-9_5
Kalev-Altman R, Hanael E, Zelinger E, Blum M, Monsonego-Ornan E, Sela-Donenfeld D (2020) Conserved role of matrix metalloproteases 2 and 9 in promoting the migration of neural crest cells in avian and mammalian embryos. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 34(4):5240–5261. https://doi.org/10.1096/fj.201901217RR
Article PubMed CAS Google Scholar
Kumar L, Bisen M, Khan A, Kumar P, Patel SKS (2022) Role of Matrix Metalloproteinases in Musculoskeletal Diseases. Biomedicines. https://doi.org/10.3390/biomedicines10102477
Article PubMed PubMed Central Google Scholar
Lewis MP, Tippett HL, Sinanan AC, Morgan MJ, Hunt NP (2000) Gelatinase-B (matrix metalloproteinase-9; MMP-9) secretion is involved in the migratory phase of human and murine muscle cell cultures. J Muscle Res Cell Motil. https://doi.org/10.1023/a:1005670507906
Comments (0)