Increased Fos immunoreactivity in astrocytes in the raphe pallidus under hypoxia, not hypercapnia

Aley PK, Murray HJ, Boyle JP, Pearson HA, Peers C (2006) Hypoxia stimulates Ca2+ release from intracellular stores in astrocytes via cyclic ADP ribose-mediated activation of ryanodine receptors. Cell Calcium 39:95–100. https://doi.org/10.1016/j.ceca.2005.09.009

Article  CAS  PubMed  Google Scholar 

Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J, Teschemacher AG, Ackland GL, Funk GD, Kasparov S, Abramov AY, Gourine AV (2015) Functional oxygen sensitivity of astrocytes. J Neurosci 35:10460–10473. https://doi.org/10.1523/JNEUROSCI.0045-15.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belegu R, Hadziefendić S, Dreshaj IA, Haxhiu MA, Martin RJ (1999) CO2-induced c-fos expression in medullary neurons during early development. Respir Physiol 117:13–28. https://doi.org/10.1016/S0034-5687(99)00046-8

Article  CAS  PubMed  Google Scholar 

Berquin P, Bodineau L, Gros F, Larnicol N (2000) Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a fos study in adult rats. Brain Res 857:30–40. https://doi.org/10.1016/S0006-8993(99)02304-5

Article  CAS  PubMed  Google Scholar 

Besnard S, Denise P, Cappelin B, Dutschmann M, Gestreau C (2009) Stimulation of the rat medullary raphe nuclei induces differential responses in respiratory muscle activity. Respir Physiol Neurobiol 165:208–214. https://doi.org/10.1016/j.resp.2008.12.004

Article  CAS  PubMed  Google Scholar 

Cao Y, Song G (2007) Purinergic modulation of respiration via medullary raphe nuclei in rats. Respir Physiol Neurobiol 155:114–120. https://doi.org/10.1016/j.resp.2006.04.013

Article  CAS  PubMed  Google Scholar 

Cao Y, Matsuyama K, Fujito Y, Aoki M (2006) Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats. Neurosci Res 56:322–331. https://doi.org/10.1016/j.neures.2006.08.001

Article  CAS  PubMed  Google Scholar 

Chen Q, Weng K, Lin M, Jiang M, Fang Y, Chung SSW, Huang X, Zhong Q, Liu Z, Huang Z, Lin J, Li P, El-Rifai W, Zaika A, Li H, Rustgi AK, Nakagawa H, Abrams JA, Wang TC, Lu C, Huang C, Que J (2023) SOX9 modulates the transformation of gastric stem cells through biased symmetric cell division. Gastroenterology 164:1119-1136.e12. https://doi.org/10.1053/j.gastro.2023.01.037

Article  CAS  PubMed  Google Scholar 

Cleary CM, Browning JL, Armbruster M, Sobrinho CR, Strain ML, Jahanbani S, Soto-Perez J, Hawkins VE, Dulla CG, Olsen ML, Mulkey DK (2024) Kir4.1 channels contribute to astrocyte CO2/H+-sensitivity and the drive to breathe. Commun Biol 7:373. https://doi.org/10.1038/s42003-024-06065-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Close LN, Cetas JS, Heinricher MM, Selden NR (2009) Purinergic receptor immunoreactivity in the rostral ventromedial medulla. Neuroscience 158:915–921. https://doi.org/10.1016/j.neuroscience.2008.08.044

Article  CAS  PubMed  Google Scholar 

Dentico D, Amici R, Baracchi F, Cerri M, Del Sindaco E, Luppi M, Martelli D, Perez E, Zamboni G (2009) C-Fos expression in preoptic nuclei as a marker of sleep rebound in the rat. Eur J Neurosci 30:651–661. https://doi.org/10.1111/j.1460-9568.2009.06848.x

Article  PubMed  Google Scholar 

Erickson JT, Millhorn DE (1991) Fos-like protein is induced in neurons of the medulla oblongata after stimulation of the carotid sinus nerve in awake and anesthetized rats. Brain Res 567:11–24. https://doi.org/10.1016/0006-8993(91)91430-9

Article  CAS  PubMed  Google Scholar 

Erickson JT, Millhorn DE (1994) Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos-like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem. J Comp Neurol 348:161–182. https://doi.org/10.1002/cne.903480202

Article  CAS  PubMed  Google Scholar 

Fukushi I, Takeda K, Yokota S, Hasebe Y, Sato Y, Pokorski M, Horiuchi J, Okada Y (2016) Effects of arundic acid, an astrocytic modulator, on the cerebral and respiratory functions in severe hypoxia. Respir Physiol Neurobiol 226:24–29. https://doi.org/10.1016/j.resp.2015.11.011

Article  CAS  PubMed  Google Scholar 

Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575. https://doi.org/10.1126/science.1190721

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Shi Y, Bayliss DA (2019) The retrotrapezoid nucleus: central chemoreceptor and regulator of breathing automaticity. Trends Neurosci 42:807–824. https://doi.org/10.1016/j.tins.2019.09.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hilaire G, Voituron N, Menuet C, Ichiyama RM, Subramanian HH, Dutschmann M (2010) The role of serotonin in respiratory function and dysfunction. Respir Physiol Neurobiol 174:76–88. https://doi.org/10.1016/j.resp.2010.08.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirooka Y, Polson JW, Potts PD, Dampney RA (1997) Hypoxia-induced Fos expression in neurons projecting to the pressor region in the rostral ventrolateral medulla. Neuroscience 80:1209–1224. https://doi.org/10.1016/S0306-4522(97)00111-5

Article  CAS  PubMed  Google Scholar 

Jeton F, Perrin-Terrin AS, Yegen CH, Marchant D, Richalet JP, Pichon A, Boncoeur E, Bodineau L, Voituron N (2022) In transgenic erythropoietin deficient mice, an increase in respiratory response to hypercapnia parallels abnormal distribution of CO2/H+-activated cells in the medulla oblongata. Front Physiol 13:850418. https://doi.org/10.3389/fphys.2022.850418

Article  PubMed  PubMed Central  Google Scholar 

Kato K, Yamaguchi-Yamada M, Yamamoto Y (2010) Short-term hypoxia increases tyrosine hydroxylase immunoreactivity in rat carotid body. J Histochem Cytochem 58:839–846. https://doi.org/10.1369/jhc.2010.956250

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato K, Morinaga R, Fushuku S, Nakamuta N, Yamamoto Y (2018) Time-dependent changes in cardiorespiratory functions of anesthetized rats exposed to sustained hypoxia. Auton Neurosci 212:1–9. https://doi.org/10.1016/j.autneu.2018.03.002

Article  PubMed  Google Scholar 

Kato K, Morinaga R, Yokoyama T, Fushuku S, Wakai J, Nakamuta N, Yamamoto Y (2022) Effects of CO2 on time-dependent changes in cardiorespiratory functions under sustained hypoxia. Respir Physiol Neurobiol 300:103886. https://doi.org/10.1016/j.resp.2022.103886

Article  CAS  PubMed  Google Scholar 

Kato K, Serizawa R, Yokoyama T, Nakamuta N, Yamamoto Y (2024) Fos expression in A1/C1 neurons of rats exposed to hypoxia, hypercapnia, or hypercapnic hypoxia. Neurosci Lett 843:138024. https://doi.org/10.1016/j.neulet.2024.138024

Article  CAS  PubMed  Google Scholar 

Kovács KJ (2008) Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol 20:665–672. https://doi.org/10.1111/j.1365-2826.2008.01734.x

Article  CAS  PubMed  Google Scholar 

Laflamme N, Feuvrier E, Richard D, Rivest S (1999) Involvement of serotonergic pathways in mediating the neuronal activity and genetic transcription of neuroendocrine corticotropin-releasing factor in the brain of systemically endotoxin-challenged rats. Neuroscience 88:223–240. https://doi.org/10.1016/S0306-4522(98)00369-8

Article  CAS  PubMed  Google Scholar 

Larnicol N, Wallois F, Berquin P, Gros F, Rose D (1994) C-fos-like immunoreactivity in the cat’s neuraxis following moderate hypoxia or hypercapnia. J Physiol Paris 88:81–88. https://doi.org/10.1016/0928-4257(94)90094-9

Article  CAS  PubMed  Go

Comments (0)

No login
gif