HDL metabolism and function in diabetes mellitus

Miller, N. E. & Miller, G. J. Letter: high-density lipoprotein and atherosclerosis. Lancet 1, 1033 (1975).

Article  CAS  PubMed  Google Scholar 

Bowman, L. et al. HPS3/TIMI55–REVEAL Collaborative Group. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).

Article  PubMed  Google Scholar 

Davidson, W. S., Shah, A. S., Sexmith, H. & Gordon, S. M. The HDL proteome watch: compilation of studies leads to new insights on HDL function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867, 159072 (2022).

Article  CAS  PubMed  Google Scholar 

Fryirs, M. A. et al. Effects of high-density lipoproteins on pancreatic β-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 30, 1642–1648 (2010).

Article  CAS  PubMed  Google Scholar 

Wang, F. et al. Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc. Natl Acad. Sci. USA 109, 9641–9646 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jonas, A. Regulation of lecithin cholesterol acyltransferase activity. Prog. Lipid Res. 37, 209–234 (1998).

Article  CAS  PubMed  Google Scholar 

Rye, K. A., Hime, N. J. & Barter, P. J. The influence of cholesteryl ester transfer protein on the composition, size, and structure of spherical, reconstituted high density lipoproteins. J. Biol. Chem. 270, 189–196 (1995).

Article  CAS  PubMed  Google Scholar 

Rye, K. A., Hime, N. J. & Barter, P. J. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J. Biol. Chem. 272, 3953–3960 (1997).

Article  CAS  PubMed  Google Scholar 

Settasatian, N. et al. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J. Biol. Chem. 276, 26898–26905 (2001).

Article  CAS  PubMed  Google Scholar 

Clay, M. A., Rye, K. A. & Barter, P. J. Evidence in vitro that hepatic lipase reduces the concentration of apolipoprotein A-I in rabbit high-density lipoproteins. Biochim. Biophys. Acta 1044, 50–56 (1990).

Article  CAS  PubMed  Google Scholar 

Jaye, M. et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21, 424–428 (1999).

Article  CAS  PubMed  Google Scholar 

Jahangiri, A. et al. Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J. Lipid Res. 46, 896–903 (2005).

Article  CAS  PubMed  Google Scholar 

Ahmed, M. O. et al. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 64, 656–667 (2021).

Article  CAS  PubMed  Google Scholar 

Cardner, M. et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 5, e131491 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Mora, S. et al. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 59, 1153–1160 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garvey, W. T. et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52, 453–462 (2003).

Article  CAS  PubMed  Google Scholar 

Verges, B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 58, 886–899 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

Article  CAS  PubMed  Google Scholar 

Tilly-Kiesi, M., Knudsen, P., Groop, L. & Taskinen, M. R. Hyperinsulinemia and insulin resistance are associated with multiple abnormalities of lipoprotein subclasses in glucose-tolerant relatives of NIDDM patients. Botnia Study Group. J. Lipid Res. 37, 1569–1578 (1996).

Article  CAS  PubMed  Google Scholar 

Ganjali, S. et al. HDL functionality in type 1 diabetes. Atherosclerosis 267, 99–109 (2017).

Article  CAS  PubMed  Google Scholar 

Valabhji, J. et al. High-density lipoprotein composition and paraoxonase activity in Type I diabetes. Clin. Sci. 101, 659–670 (2001).

Article  CAS  Google Scholar 

Rawshani, A. et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation 135, 1522–1531 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Du, X. M. et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ. Res. 116, 1133–1142 (2015).

Article  CAS  PubMed  Google Scholar 

Glomset, J. A. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).

Article  CAS  PubMed  Google Scholar 

Mineo, C., Yuhanna, I. S., Quon, M. J. & Shaul, P. W. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J. Biol. Chem. 278, 9142–9149 (2003).

Article  CAS  PubMed  Google Scholar 

Cockerill, G. W., Rye, K. A., Gamble, J. R., Vadas, M. A. & Barter, P. J. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 15, 1987–1994 (1995).

Article  CAS  PubMed  Google Scholar 

Brites, F., Martin, M., Guillas, I. & Kontush, A. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin. 8, 66–77 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Rohatgi, A. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383–2393 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. M. et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol. 33, 1696–1705 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kennedy, M. A. et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 1, 121–131 (2005).

Article  CAS  PubMed 

Comments (0)

No login
gif