Miller, N. E. & Miller, G. J. Letter: high-density lipoprotein and atherosclerosis. Lancet 1, 1033 (1975).
Article CAS PubMed Google Scholar
Bowman, L. et al. HPS3/TIMI55–REVEAL Collaborative Group. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).
Davidson, W. S., Shah, A. S., Sexmith, H. & Gordon, S. M. The HDL proteome watch: compilation of studies leads to new insights on HDL function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867, 159072 (2022).
Article CAS PubMed Google Scholar
Fryirs, M. A. et al. Effects of high-density lipoproteins on pancreatic β-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 30, 1642–1648 (2010).
Article CAS PubMed Google Scholar
Wang, F. et al. Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc. Natl Acad. Sci. USA 109, 9641–9646 (2012).
Article CAS PubMed PubMed Central Google Scholar
Jonas, A. Regulation of lecithin cholesterol acyltransferase activity. Prog. Lipid Res. 37, 209–234 (1998).
Article CAS PubMed Google Scholar
Rye, K. A., Hime, N. J. & Barter, P. J. The influence of cholesteryl ester transfer protein on the composition, size, and structure of spherical, reconstituted high density lipoproteins. J. Biol. Chem. 270, 189–196 (1995).
Article CAS PubMed Google Scholar
Rye, K. A., Hime, N. J. & Barter, P. J. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J. Biol. Chem. 272, 3953–3960 (1997).
Article CAS PubMed Google Scholar
Settasatian, N. et al. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J. Biol. Chem. 276, 26898–26905 (2001).
Article CAS PubMed Google Scholar
Clay, M. A., Rye, K. A. & Barter, P. J. Evidence in vitro that hepatic lipase reduces the concentration of apolipoprotein A-I in rabbit high-density lipoproteins. Biochim. Biophys. Acta 1044, 50–56 (1990).
Article CAS PubMed Google Scholar
Jaye, M. et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21, 424–428 (1999).
Article CAS PubMed Google Scholar
Jahangiri, A. et al. Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J. Lipid Res. 46, 896–903 (2005).
Article CAS PubMed Google Scholar
Ahmed, M. O. et al. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 64, 656–667 (2021).
Article CAS PubMed Google Scholar
Cardner, M. et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 5, e131491 (2020).
Article PubMed PubMed Central Google Scholar
Mora, S. et al. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 59, 1153–1160 (2010).
Article CAS PubMed PubMed Central Google Scholar
Garvey, W. T. et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52, 453–462 (2003).
Article CAS PubMed Google Scholar
Verges, B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 58, 886–899 (2015).
Article CAS PubMed PubMed Central Google Scholar
Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).
Article CAS PubMed Google Scholar
Tilly-Kiesi, M., Knudsen, P., Groop, L. & Taskinen, M. R. Hyperinsulinemia and insulin resistance are associated with multiple abnormalities of lipoprotein subclasses in glucose-tolerant relatives of NIDDM patients. Botnia Study Group. J. Lipid Res. 37, 1569–1578 (1996).
Article CAS PubMed Google Scholar
Ganjali, S. et al. HDL functionality in type 1 diabetes. Atherosclerosis 267, 99–109 (2017).
Article CAS PubMed Google Scholar
Valabhji, J. et al. High-density lipoprotein composition and paraoxonase activity in Type I diabetes. Clin. Sci. 101, 659–670 (2001).
Rawshani, A. et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation 135, 1522–1531 (2017).
Article PubMed PubMed Central Google Scholar
Du, X. M. et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ. Res. 116, 1133–1142 (2015).
Article CAS PubMed Google Scholar
Glomset, J. A. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).
Article CAS PubMed Google Scholar
Mineo, C., Yuhanna, I. S., Quon, M. J. & Shaul, P. W. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J. Biol. Chem. 278, 9142–9149 (2003).
Article CAS PubMed Google Scholar
Cockerill, G. W., Rye, K. A., Gamble, J. R., Vadas, M. A. & Barter, P. J. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 15, 1987–1994 (1995).
Article CAS PubMed Google Scholar
Brites, F., Martin, M., Guillas, I. & Kontush, A. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin. 8, 66–77 (2017).
Article PubMed PubMed Central Google Scholar
Rohatgi, A. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383–2393 (2014).
Article CAS PubMed PubMed Central Google Scholar
Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).
Article CAS PubMed PubMed Central Google Scholar
Li, X. M. et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol. 33, 1696–1705 (2013).
Article CAS PubMed PubMed Central Google Scholar
Kennedy, M. A. et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 1, 121–131 (2005).
Comments (0)