Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397–411 (1911).
Article CAS PubMed PubMed Central Google Scholar
Avery, O. T., MacLeod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J. Exp. Med. 79, 137–158 (1944).
Article CAS PubMed PubMed Central Google Scholar
Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).
Article CAS PubMed Google Scholar
Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).
Article CAS PubMed Google Scholar
Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).
Article CAS PubMed Google Scholar
Yoshida, M., Miyoshi, I. & Hinuma, Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc. Natl Acad. Sci. USA 79, 2031–2035 (1982).
Article CAS PubMed PubMed Central Google Scholar
Kalyanaraman, V. S. et al. Natural antibodies to the structural core protein (p24) of the human T-cell leukemia (lymphoma) retrovirus found in sera of leukemia patients in Japan. Proc. Natl Acad. Sci. USA 79, 1653–1657 (1982).
Article CAS PubMed PubMed Central Google Scholar
Bell, T. M., Massie, A., Ross, M. G. R. & Williams, M. C. Isolation of a reovirus from a case of Burkitt’s lymphoma. Br. Med J. 1, 1212–1213 (1964).
Article CAS PubMed PubMed Central Google Scholar
Dürst, M., Gissmann, L., Ikenberg, H. & zur Hausen, H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl Acad. Sci. USA 80, 3812–3815 (1983).
Article PubMed PubMed Central Google Scholar
Warren, J. R. & Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 321, 1273–1275 (1983).
Plummer, M., Franceschi, S., Vignat, J., Forman, D. & de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 136, 487–490 (2015).
Article CAS PubMed Google Scholar
Li, W.-Q. et al. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: follow-up of a randomized intervention trial. Brit. Med. J. 366, l5016 (2019).
Article PubMed PubMed Central Google Scholar
Ford, A. C., Yuan, Y., Forman, D., Hunt, R. & Moayyedi, P. Helicobacter pylori eradication for the prevention of gastric neoplasia. Cochrane Database Syst. Rev. 7, CD005583 (2020).
Chiang, T.-H. et al. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: a long-term cohort study on Matsu Islands. Gut 70, 243–250 (2021).
Article CAS PubMed Google Scholar
Sears, C. L. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin. Microbiol. Rev. 22, 349–369 (2009).
Article CAS PubMed PubMed Central Google Scholar
El Tekle, G. & Garrett, W. S. Bacteria in cancer initiation, promotion and progression. Nat. Rev. Cancer 23, 600–618 (2023).
Article CAS PubMed Google Scholar
Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).
Article CAS PubMed PubMed Central Google Scholar
Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).
Article CAS PubMed PubMed Central Google Scholar
Iliev, I. D. et al. Focus on fungi. Cell 187, 5121–5127 (2024).
Article CAS PubMed PubMed Central Google Scholar
Galloway-Peña, J., Iliev, I.ÿD. & McAllister, F. Fungi in cancer. Nat. Rev. Cancer 24, 295–298 (2024).
Article PubMed PubMed Central Google Scholar
Dohlman, A. B. et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 185, 3807–3822.e12 (2022).
Article CAS PubMed PubMed Central Google Scholar
Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789–3806.e17 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xavier, J. B. et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer 6, 192–204 (2020).
Article CAS PubMed PubMed Central Google Scholar
Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).
Article CAS PubMed PubMed Central Google Scholar
Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli. Nature 580, 269–273 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).
Article CAS PubMed PubMed Central Google Scholar
Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).
Article CAS PubMed PubMed Central Google Scholar
Alam, A. et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 40, 153–167.e11 (2022).
Article CAS PubMed PubMed Central Google Scholar
Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).
Article CAS PubMed PubMed Central Google Scholar
Cullin, N., Azevedo Antunes, C., Straussman, R., Stein-Thoeringer, C. K. & Elinav, E. Microbiome and cancer. Cancer Cell 39, 1317–1341 (2021).
Comments (0)