Lee, J. Y., Tsolis, R. M. & Baumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).
Argaw-Denboba, A. et al. Paternal microbiome perturbations impact offspring fitness. Nature 629, 652–659 (2024).
Article CAS PubMed PubMed Central Google Scholar
Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e14 (2018).
Article CAS PubMed PubMed Central Google Scholar
Wilde, J., Slack, E. & Foster, K. R. Host control of the microbiome: mechanisms, evolution, and disease. Science 385, eadi3338 (2024).
Article CAS PubMed Google Scholar
Zhang, J. Y. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).
Article CAS PubMed Google Scholar
Cordero, O. X. et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231 (2012).
Article CAS PubMed Google Scholar
Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G. & Ley, R. E. Cross-species comparisons of host genetic associations with the microbiome. Science 352, 532–535 (2016).
Article CAS PubMed PubMed Central Google Scholar
Lyng, M. & Kovacs, A. T. Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends Microbiol. 31, 845–857 (2023).
Article CAS PubMed Google Scholar
Garcia-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial communities. Science 361, 1215 (2018).
Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).
Article CAS PubMed PubMed Central Google Scholar
Dahlstrom, K. M., McRose, D. L. & Newman, D. K. Keystone metabolites of crop rhizosphere microbiomes. Curr. Biol. 30, R1131–R1137 (2020).
Article CAS PubMed PubMed Central Google Scholar
Krespach, M. K. C. et al. Streptomyces polyketides mediate bacteria–fungi interactions across soil environments. Nat. Microbiol. 8, 1348–1361 (2023).
Article CAS PubMed PubMed Central Google Scholar
Purtschert-Montenegro, G. et al. Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat. Microbiol. 7, 1547–1557 (2022).
Article CAS PubMed PubMed Central Google Scholar
Barone, G. D. et al. Implications of bacteria–bacteria interactions within the plant microbiota for plant health and productivity. J. Zhejiang Univ. Sci. B 25, 1039–1054 (2024).
Mavrodi, D. V., Blankenfeldt, W. & Thomashow, L. S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 44, 417–445 (2006).
Article CAS PubMed Google Scholar
Dar, D., Thomashow, L. S., Weller, D. M. & Newman, D. K. Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. Elife 9, e59726 (2020).
Article CAS PubMed PubMed Central Google Scholar
Saunders, S. H. et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell 182, 919–932.e19 (2020).
Article CAS PubMed PubMed Central Google Scholar
McRose, D. L. & Newman, D. K. Redox-active antibiotics enhance phosphorus bioavailability. Science 371, 1033–1037 (2021).
Article CAS PubMed PubMed Central Google Scholar
McRose, D. L., Li, J. Y. & Newman, D. K. The chemical ecology of coumarins and phenazines affects iron acquisition by Pseudomonads. Proc. Natl Acad. Sci. USA 120, e2217951120 (2023).
Article CAS PubMed PubMed Central Google Scholar
Meirelles, L. A. & Newman, D. K. Phenazines and toxoflavin act as interspecies modulators of resilience to diverse antibiotics. Mol. Microbiol. 117, 1384–1404 (2022).
Article CAS PubMed PubMed Central Google Scholar
Moura-Alves, P. et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512, 387–392 (2014).
Article CAS PubMed Google Scholar
Guo, S. Q. et al. Microbial synthesis of antibacterial phenazine-1,6-dicarboxylic acid and the role of PhzG in Pseudomonas chlororaphis GP72AN. J. Agric. Food Chem. 68, 2373–2380 (2020).
Article CAS PubMed Google Scholar
Perry, E. K. & Newman, D. K. Prevalence and correlates of phenazine resistance in culturable bacteria from a dryland wheat field. Appl. Environ. Microbiol. 88, e0232021 (2022).
Kozdrój, J., Trevors, J. T. & van Elsas, J. D. Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere. Soil Biol. Biochem. 36, 1775–1784 (2004).
Laursen, J. B. & Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663–1685 (2004).
Article CAS PubMed Google Scholar
Chen, Y. et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9, 3429 (2018).
Article PubMed PubMed Central Google Scholar
Briard, B. et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci. Rep. 5, 8820 (2015).
Hotter, V. et al. A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proc. Natl Acad. Sci. USA 118, e2107695118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Mavrodi, D. V. et al. Diversity and evolution of the phenazine biosynthesis pathway. Appl. Environ. Microbiol. 76, 866–879 (2010).
Article CAS PubMed Google Scholar
Imai, Y. et al. Evybactin is a DNA gyrase inhibitor that selectively kills Mycobacterium tuberculosis. Nat. Chem. Biol. 18, 1236–1244 (2022).
Article CAS PubMed PubMed Central Google Scholar
Perry, E. K., Meirelles, L. A. & Newman, D. K. From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat. Rev. Microbiol. 20, 129–142 (2021).
Article PubMed PubMed Central Google Scholar
Ran, H. M., Hassett, D. J. & Lau, G. W. Human targets of Pseudomonas aeruginosa pyocyanin. Proc. Natl Acad. Sci. USA 100, 14315–14320 (2003).
Comments (0)