Ba-Ssalamaha A, Schick S, Heimberger K, et al. Ultrafast magnetic resonance imaging of the brain. Magn Reson Imaging. 2000;18(3):237–43. https://doi.org/10.1016/s0730-725x(99)00140-x.
Article CAS PubMed Google Scholar
Scheidler J, Heuck AF, Bruening R, et al. Magnetic resonance imaging of the female pelvis. New circularly polarized body array coil versus standard body coil. Invest Radiol. 1997;32(1):1–6. https://doi.org/10.1097/00004424-199701000-00001.
Article CAS PubMed Google Scholar
Mergo PJ, Engelken JD, Helmberger T, Ros PR. MRI in focal liver disease: a comparison of small and ultra-small superparamagnetic iron oxide as hepatic contrast agents. J Magn Reson Imaging. 1998;8(5):1073–8. https://doi.org/10.1002/jmri.1880080511.
Article CAS PubMed Google Scholar
Ueda T, Ohno Y, Yamamoto K, et al. Compressed sensing and deep learning reconstruction for women’s pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice. Eur J Radiol. 2021;134: 109430. https://doi.org/10.1016/j.ejrad.2020.109430.
Ueda T, Ohno Y, Yamamoto K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging. Radiology. 2022;303(2):373–81. https://doi.org/10.1148/radiol.204097.
Kashiwagi N, Tanaka H, Yamashita Y, et al. Applicability of deep learning-based reconstruction trained by brain and knee 3T MRI to lumbar 1.5T MRI. Acta Radiol Open. 2021;10(6):20584601211023940. https://doi.org/10.1177/20584601211023939.
Article PubMed PubMed Central Google Scholar
Kaufman L, Kramer DM, Crooks LE, Ortendahl DA. Measuring signal-to-noise ratios in MR imaging. Radiology. 1989;173(1):265–7. https://doi.org/10.1148/radiology.173.1.2781018.
Article CAS PubMed Google Scholar
Price RR, Axel L, Morgan T, et al. Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance task group no. 1. Med Phys. 1990;17(2):287–95. https://doi.org/10.1118/1.596566.
Article CAS PubMed Google Scholar
Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26(2):375–85. https://doi.org/10.1002/jmri.20969.
Goerner FL, Clarke GD. Measuring signal-to-noise ratio in partially parallel imaging MRI. Med Phys. 2011;38(9):5049–57. https://doi.org/10.1118/1.3618730.
Article PubMed PubMed Central Google Scholar
Steckner MC. A simple method for estimating the noise level in a signal region of an MR image. Med Phys. 2010;37(9):5072–9. https://doi.org/10.1118/1.3480511.
Reeder SB, Wintersperger BJ, Dietrich O, et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med. 2005;54(3):748–54. https://doi.org/10.1002/mrm.20636.
Sodickson DK, Griswold MA, Jakob PM, Edelman RR, Manning WJ. Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging. Magn Reson Med. 1999;41(5):1009–22. https://doi.org/10.1002/(sici)1522-2594(199905)41:5%3c1009::aid-mrm21%3e3.0.co;2-4.
Article CAS PubMed Google Scholar
National Electrical Manufacturers Association (NEMA). Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication MS 1-2008 2008; 2018.
McCann AJ, Workman A, McGrath C. A quick and robust method for measurement of signal-to-noise ratio in MRI. Phys Med Biol. 2013;58(11):3775–90. https://doi.org/10.1088/0031-9155/58/11/3775.
Article CAS PubMed Google Scholar
Imai H, Miyati T, Ogura A, et al. Signal-to-noise ratio measurement in parallel MRI with subtraction mapping and consecutive methods. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2008;64(8):930–6. https://doi.org/10.6009/jjrt.64.930.
Miyati T, Imai H, Ogura A, et al. Novel SNR determination method in parallel MRI. Proc. SPIE 6142, Medical Imaging 2006: Physics of Medical Imaging, 61423O. (2006). https://doi.org/10.1117/12.653482
Ogura A, Miyati T, Kobayashi M, et al. Method of SNR determination using clinical images. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2007;63(9):1099–104. https://doi.org/10.6009/jjrt.63.1099.
Henkelman RM. Measurement of signal intensities in the presence of noise in MR images. Med Phys. 1985;12(2):232–3. https://doi.org/10.1118/1.595711.
Article CAS PubMed Google Scholar
Constantinides CD, Atalar E, McVeigh ER. Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med. 1997;38(5):852–7. https://doi.org/10.1002/mrm.1910380524.
Article CAS PubMed PubMed Central Google Scholar
Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med. 1995;34(6):910–4. https://doi.org/10.1002/mrm.1910340618.
Article CAS PubMed PubMed Central Google Scholar
Mueller-Lisse UG, Murer S, Mueller-Lisse UL, Kuhn M, Scheidler J, Scherr M. Everyman’s prostate phantom: kiwi-fruit substitute for human prostates at magnetic resonance imaging, diffusion-weighted imaging and magnetic resonance spectroscopy. Eur Radiol. 2017;27(8):3362–71. https://doi.org/10.1007/s00330-016-4706-7.
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12. https://doi.org/10.1109/tip.2003.819861.
Pawar K, Chen Z, Shah NJ, Egan GF. Suppressing motion artefacts in MRI using an inception-ResNet network with motion simulation augmentation. NMR Biomed. 2022;35(4):e4225. https://doi.org/10.1002/nbm.4225.
Kim T, Park JC, Gach HM, Chun J, Mutic S. Technical note: real-time 3D MRI in the presence of motion for MRI-guided radiotherapy: 3D dynamic keyhole imaging with super-resolution. Med Phys. 2019;46(10):4631–8. https://doi.org/10.1002/mp.13748.
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.
Jumiawi WAH, El-Zaart A. Improvement in the between-class variance based on lognormal distribution for accurate image segmentation. Entropy. 2022;24(9): 1204. https://doi.org/10.3390/e24091204.
Article PubMed PubMed Central Google Scholar
Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory. 1982;28(2):129–37.
Fatnassi C, Zaidi H. Fast and accurate pseudo multispectral technique for whole-brain MRI tissue classification. Phys Med Biol. 2019;64(14): 145005. https://doi.org/10.1088/1361-6560/ab239e.
Kates R, Atkinson D, Brant-Zawadzki M. Fluid-attenuated inversion recovery (FLAIR): clinical prospectus of current and future applications. Top Magn Reson Imaging. 1996;8(6):389–96.
Article CAS PubMed Google Scholar
Bakshi R, Ariyaratana S, Benedict RH, Jacobs L. Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol. 2001;58(5):742–8. https://doi.org/10.1001/archneur.58.5.742.
Article CAS PubMed Google Scholar
Billot B, Magdamo C, Cheng Y, Arnold SE, Das S, Iglesias JE. Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets. Proc Natl Acad Sci U S A. 2023;120(9): e2216399120. https://doi.org/10.1073/pnas.2216399120.
Comments (0)