Haacke EM, Tkach JA. Fast MR imaging: techniques and clinical applications. AJR Am J Roentgenol. 1990;155(5):951–64. https://doi.org/10.2214/ajr.155.5.2120964.
Article CAS PubMed Google Scholar
Pfeifer CM. Rapid-sequence MRI of the brain: a distinct imaging study. AJNR Am J Neuroradiol. 2018;39(8):E93–4. https://doi.org/10.3174/ajnr.A5685.
Article CAS PubMed PubMed Central Google Scholar
Karantanas AH, Zibis AH, Papanikolaou N. Comparison of echo planar imaging, gradient echo, and fast spin echo MR scans of knee menisci. Comput Med Imaging Graph. 2000;24(5):309–16. https://doi.org/10.1016/s0895-6111(00)00027-6.
Article CAS PubMed Google Scholar
Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging. 2015;42(4):887–901. https://doi.org/10.1002/jmri.24850.
Article PubMed PubMed Central Google Scholar
Beall DP, Fortman BJ, Lawler BC, Regan F. Imaging bowel obstruction: a comparison between fast magnetic resonance imaging and helical computed tomography. Clin Radiol. 2002;57(8):719–24. https://doi.org/10.1053/crad.2001.0735.
Article CAS PubMed Google Scholar
Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan GF. Deep learning for image enhancement and correction in magnetic resonance imaging-state-of-the-art and challenges. J Digit Imaging. 2023;36(1):204–30. https://doi.org/10.1007/s10278-022-00721-9.
Zhu G, Jiang B, Tong L, Xie Y, Zaharchuk G, Wintermark M. Applications of deep learning to neuro-imaging techniques. Front Neurol. 2019;10:869. https://doi.org/10.3389/fneur.2019.00869.
Article PubMed PubMed Central Google Scholar
Rudie JD, Gleason T, Barkovich MJ, Wilson DM, Shankaranarayanan A, Zhang T, Wang L, Gong E, Zaharchuk G, Villanueva-Meyer JE. Clinical assessment of deep learning-based super-resolution for 3D volumetric brain MRI. Radiol Artif Intell. 2022;4(2): e210059. https://doi.org/10.1148/ryai.210059.
Article PubMed PubMed Central Google Scholar
Almansour H, Herrmann J, Gassenmaier S, Lingg A, Nickel M, Kannengiesser S, Arberet S, Othman A, Afat S. Combined deep learning-based super-resolution and partial fourier reconstruction for gradient echo sequences in abdominal MRI at 3 Tesla: Shortening breath-hold time and improving image sharpness and lesion conspicuity. Acad Radiol. 2022. https://doi.org/10.1016/j.acra.2022.06.003.
Chu B, Gan L, Shen Y, Song J, Liu L, Li J, Liu B. A deep learning image reconstruction algorithm for improving image quality and hepatic lesion detectability in abdominal dual-energy computed tomography: preliminary results. J Digit Imaging. 2023;36:763–71. https://doi.org/10.1007/s10278-023-00893-y.
Zhang Z, Yang Y, Yuan Y, Chen Q. Enhancing the reconstruction process of undersampled non-Cartesian dynamic abdominal MRI data using deep learning-based convolutional recurrent neural networks. Med Image Anal. 2021;68: 101857. https://doi.org/10.1016/j.media.2020.101857.
Kim HK, Kim Y, Lee S, Kang H, Park S. Deep learning-based k-space-to-image reconstruction and super-resolution for diffusion-weighted imaging in whole-spine MRI. Magn Reson Med. 2023;89(1):215–29. https://doi.org/10.1002/mrm.28542.
Racine D, Becce F, Rizzo E, Verdun FR, Bochud FO. Performance of deep learning-based image reconstruction for low-dose abdominal CT in a prospective clinical study. Radiology. 2020;297(2):442–51. https://doi.org/10.1148/radiol.2020200746.
Bornet PA, Villani N, Gillet R, Germain E, Lombard C, Blum A, Teixeira PG. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment. Eur Radiol. 2022;32(5):3151–62. https://doi.org/10.1007/s00330-021-08410-x.
Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–81.
Schuff N, et al. MRI of hippocampal volume loss in early Alzheimer’s disease. Neuroimage. 2009;45(1):37–43.
Rueda A, Malpica N, Romero E. Single-image super-resolution of brain MR images using overcomplete dictionaries. Med Image Anal. 2013;17(1):113–32.
Coupé P, Mansencal B, Clément M, Giraud R, Senneville BD, Thong TV, Lepetit V, Manjón JV. AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation. Neuroimage. 2019;219:117026.
Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 2006;14(2):336–41. https://doi.org/10.1038/oby.2006.43. (PMID: 16571861).
Thomas EL, Parkinson JR, Frost GS, Goldstone AP, Doré CJ, McCarthy JP, Collins AL, Fitzpatrick J, Durighel G, Taylor-Robinson SD, Bell JD. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity. 2012;20:76–87.
Article CAS PubMed Google Scholar
Takahashi M, Takenaga T, Nomura Y, Hanaoka S, Hayashi N, Nemoto M, Nakao T, Miki S, Yoshikawa T, Kobayashi T, Abe S. Automated volume measurement of abdominal adipose tissue from entire abdominal cavity in Dixon MR images using deep learning. Radiol Phys Technol. 2022;16:28–38.
Addison O, Marcus RL, Lastayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol. 2014;2014:309570. https://doi.org/10.1155/2014/309570. (Epub 2014 Jan 8. PMID: 24527032; PMCID: PMC3910392).
Article CAS PubMed PubMed Central Google Scholar
Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89(1):104–10. https://doi.org/10.1152/jappl.2000.89.1.104. (PMID: 10904041).
Article CAS PubMed Google Scholar
Fuchs CJ, Kuipers R, Rombouts JA, Brouwers K, Schrauwen-Hinderling V, Wildberger JE, Verdijk LB, Loon LJ. Thigh muscles are more susceptible to age-related muscle loss when compared to lower leg and pelvic muscles. Exp Gerontol. 2023;175:112159.
Ledig C, Theis L, Huszár F, Caballero J, Aitken AP, Tejani A, Totz J, Wang Z, Shi W. Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE conference on computer vision and pattern recognition (CVPR). Geneva: IEEE; 2017. p. 4681–90. https://doi.org/10.1109/CVPR.2017.19.
Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): Crosssectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507. https://doi.org/10.1162/jocn.2007.19.9.1498
Wang X, Yu K, Dong C, Change Loy C. ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European conference on computer vision workshops (ECCVW). Berlin: Springer; 2018. p. 63–79. https://doi.org/10.1007/978-3-030-11021-5_5.
Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR). Geneva: IEEE; 2017. p. 4700–8. https://doi.org/10.1109/CVPR.2017.243.
Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y. Residual dense network for image super-resolution. In: IEEE conference on computer vision and pattern recognition (CVPR). Genevas: IEEE; 2018. p. 2472–81. https://doi.org/10.1109/CVPR.2018.00262.
Lim B, Son S, Kim H, Nah S, Mu Lee K. Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops (CVPRW). Geneva: IEEE; 2017. p. 1132–40. https://doi.org/10.1109/CVPRW.2017.151.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst (NeurIPS). 2017;30:5998–6008.
Jolicoeur-Martineau, A. The relativistic discriminator: a key element missing from standard GAN. 2018. ArXiv, abs/1807.00734.
Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the European conference on computer vision (ECCV). Geneva: IEREE; 2016. p. 694–711. https://doi.org/10.1007/978-3-319-46475-6_43.
Mu N, Lyu Z, Rezaeitaleshmahalleh M, Tang J, Jiang J. An attention residual u-net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Med Image Anal. 2023;84:102697. https://doi.org/10.1016/j.media.2022.102697. (Epub 2022 Nov 19. PMID: 36462374; PMCID: PMC9830590).
Comments (0)