GAN-MRI enhanced multi-organ MRI segmentation: a deep learning perspective

Haacke EM, Tkach JA. Fast MR imaging: techniques and clinical applications. AJR Am J Roentgenol. 1990;155(5):951–64. https://doi.org/10.2214/ajr.155.5.2120964.

Article  CAS  PubMed  Google Scholar 

Pfeifer CM. Rapid-sequence MRI of the brain: a distinct imaging study. AJNR Am J Neuroradiol. 2018;39(8):E93–4. https://doi.org/10.3174/ajnr.A5685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karantanas AH, Zibis AH, Papanikolaou N. Comparison of echo planar imaging, gradient echo, and fast spin echo MR scans of knee menisci. Comput Med Imaging Graph. 2000;24(5):309–16. https://doi.org/10.1016/s0895-6111(00)00027-6.

Article  CAS  PubMed  Google Scholar 

Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging. 2015;42(4):887–901. https://doi.org/10.1002/jmri.24850.

Article  PubMed  PubMed Central  Google Scholar 

Beall DP, Fortman BJ, Lawler BC, Regan F. Imaging bowel obstruction: a comparison between fast magnetic resonance imaging and helical computed tomography. Clin Radiol. 2002;57(8):719–24. https://doi.org/10.1053/crad.2001.0735.

Article  CAS  PubMed  Google Scholar 

Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan GF. Deep learning for image enhancement and correction in magnetic resonance imaging-state-of-the-art and challenges. J Digit Imaging. 2023;36(1):204–30. https://doi.org/10.1007/s10278-022-00721-9.

Article  PubMed  Google Scholar 

Zhu G, Jiang B, Tong L, Xie Y, Zaharchuk G, Wintermark M. Applications of deep learning to neuro-imaging techniques. Front Neurol. 2019;10:869. https://doi.org/10.3389/fneur.2019.00869.

Article  PubMed  PubMed Central  Google Scholar 

Rudie JD, Gleason T, Barkovich MJ, Wilson DM, Shankaranarayanan A, Zhang T, Wang L, Gong E, Zaharchuk G, Villanueva-Meyer JE. Clinical assessment of deep learning-based super-resolution for 3D volumetric brain MRI. Radiol Artif Intell. 2022;4(2): e210059. https://doi.org/10.1148/ryai.210059.

Article  PubMed  PubMed Central  Google Scholar 

Almansour H, Herrmann J, Gassenmaier S, Lingg A, Nickel M, Kannengiesser S, Arberet S, Othman A, Afat S. Combined deep learning-based super-resolution and partial fourier reconstruction for gradient echo sequences in abdominal MRI at 3 Tesla: Shortening breath-hold time and improving image sharpness and lesion conspicuity. Acad Radiol. 2022. https://doi.org/10.1016/j.acra.2022.06.003.

Article  PubMed  Google Scholar 

Chu B, Gan L, Shen Y, Song J, Liu L, Li J, Liu B. A deep learning image reconstruction algorithm for improving image quality and hepatic lesion detectability in abdominal dual-energy computed tomography: preliminary results. J Digit Imaging. 2023;36:763–71. https://doi.org/10.1007/s10278-023-00893-y.

Article  Google Scholar 

Zhang Z, Yang Y, Yuan Y, Chen Q. Enhancing the reconstruction process of undersampled non-Cartesian dynamic abdominal MRI data using deep learning-based convolutional recurrent neural networks. Med Image Anal. 2021;68: 101857. https://doi.org/10.1016/j.media.2020.101857.

Article  Google Scholar 

Kim HK, Kim Y, Lee S, Kang H, Park S. Deep learning-based k-space-to-image reconstruction and super-resolution for diffusion-weighted imaging in whole-spine MRI. Magn Reson Med. 2023;89(1):215–29. https://doi.org/10.1002/mrm.28542.

Article  CAS  Google Scholar 

Racine D, Becce F, Rizzo E, Verdun FR, Bochud FO. Performance of deep learning-based image reconstruction for low-dose abdominal CT in a prospective clinical study. Radiology. 2020;297(2):442–51. https://doi.org/10.1148/radiol.2020200746.

Article  Google Scholar 

Bornet PA, Villani N, Gillet R, Germain E, Lombard C, Blum A, Teixeira PG. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment. Eur Radiol. 2022;32(5):3151–62. https://doi.org/10.1007/s00330-021-08410-x.

Article  Google Scholar 

Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–81.

Article  PubMed  Google Scholar 

Schuff N, et al. MRI of hippocampal volume loss in early Alzheimer’s disease. Neuroimage. 2009;45(1):37–43.

Google Scholar 

Rueda A, Malpica N, Romero E. Single-image super-resolution of brain MR images using overcomplete dictionaries. Med Image Anal. 2013;17(1):113–32.

Article  PubMed  Google Scholar 

Coupé P, Mansencal B, Clément M, Giraud R, Senneville BD, Thong TV, Lepetit V, Manjón JV. AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation. Neuroimage. 2019;219:117026.

Article  Google Scholar 

Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 2006;14(2):336–41. https://doi.org/10.1038/oby.2006.43. (PMID: 16571861).

Article  PubMed  Google Scholar 

Thomas EL, Parkinson JR, Frost GS, Goldstone AP, Doré CJ, McCarthy JP, Collins AL, Fitzpatrick J, Durighel G, Taylor-Robinson SD, Bell JD. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity. 2012;20:76–87.

Article  CAS  PubMed  Google Scholar 

Takahashi M, Takenaga T, Nomura Y, Hanaoka S, Hayashi N, Nemoto M, Nakao T, Miki S, Yoshikawa T, Kobayashi T, Abe S. Automated volume measurement of abdominal adipose tissue from entire abdominal cavity in Dixon MR images using deep learning. Radiol Phys Technol. 2022;16:28–38.

Article  PubMed  Google Scholar 

Addison O, Marcus RL, Lastayo PC, Ryan AS. Intermuscular fat: a review of the consequences and causes. Int J Endocrinol. 2014;2014:309570. https://doi.org/10.1155/2014/309570. (Epub 2014 Jan 8. PMID: 24527032; PMCID: PMC3910392).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89(1):104–10. https://doi.org/10.1152/jappl.2000.89.1.104. (PMID: 10904041).

Article  CAS  PubMed  Google Scholar 

Fuchs CJ, Kuipers R, Rombouts JA, Brouwers K, Schrauwen-Hinderling V, Wildberger JE, Verdijk LB, Loon LJ. Thigh muscles are more susceptible to age-related muscle loss when compared to lower leg and pelvic muscles. Exp Gerontol. 2023;175:112159.

Article  PubMed  Google Scholar 

Ledig C, Theis L, Huszár F, Caballero J, Aitken AP, Tejani A, Totz J, Wang Z, Shi W. Photo-realistic single image super-resolution using a generative adversarial network. In: IEEE conference on computer vision and pattern recognition (CVPR). Geneva: IEEE; 2017. p. 4681–90. https://doi.org/10.1109/CVPR.2017.19.

Chapter  Google Scholar 

Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): Crosssectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507. https://doi.org/10.1162/jocn.2007.19.9.1498

Article  PubMed  Google Scholar 

Wang X, Yu K, Dong C, Change Loy C. ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European conference on computer vision workshops (ECCVW). Berlin: Springer; 2018. p. 63–79. https://doi.org/10.1007/978-3-030-11021-5_5.

Chapter  Google Scholar 

Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR). Geneva: IEEE; 2017. p. 4700–8. https://doi.org/10.1109/CVPR.2017.243.

Chapter  Google Scholar 

Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y. Residual dense network for image super-resolution. In: IEEE conference on computer vision and pattern recognition (CVPR). Genevas: IEEE; 2018. p. 2472–81. https://doi.org/10.1109/CVPR.2018.00262.

Chapter  Google Scholar 

Lim B, Son S, Kim H, Nah S, Mu Lee K. Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops (CVPRW). Geneva: IEEE; 2017. p. 1132–40. https://doi.org/10.1109/CVPRW.2017.151.

Chapter  Google Scholar 

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst (NeurIPS). 2017;30:5998–6008.

Google Scholar 

Jolicoeur-Martineau, A. The relativistic discriminator: a key element missing from standard GAN. 2018. ArXiv, abs/1807.00734.

Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the European conference on computer vision (ECCV). Geneva: IEREE; 2016. p. 694–711. https://doi.org/10.1007/978-3-319-46475-6_43.

Chapter  Google Scholar 

Mu N, Lyu Z, Rezaeitaleshmahalleh M, Tang J, Jiang J. An attention residual u-net with differential preprocessing and geometric postprocessing: learning how to segment vasculature including intracranial aneurysms. Med Image Anal. 2023;84:102697. https://doi.org/10.1016/j.media.2022.102697. (Epub 2022 Nov 19. PMID: 36462374; PMCID: PMC9830590).

Article 

Comments (0)

No login
gif