Automatic segmentation of cone beam CT images using treatment planning CT images in patients with prostate cancer

Chetty IJ, Fontenot J. Adaptive radiation therapy: off-line, on-line, and in-line? Int J Radiat Oncol Biol Phys. 2017;99:689–91. https://doi.org/10.1016/j.ijrobp.2017.07.017.

Article  PubMed  Google Scholar 

Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:994–1003. https://doi.org/10.1016/j.ijrobp.2017.04.023.

Article  PubMed  Google Scholar 

Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, Overweg J, Brown KJ, Kerkhof EM, et al. MRI/linac integration. Radiother Oncol. 2008;86:25–9.

Article  PubMed  Google Scholar 

Werensteijn-Honingh AM, Kroon PS, Winkel D, Aalbers EM, van Asselen B, Bol GH, et al. Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol. 2019;134:50–4. https://doi.org/10.1016/j.radonc.2019.01.024.

Article  PubMed  Google Scholar 

Thor M, Petersen JBB, Bentzen L, Høyer M, Muren LP. Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncol (Madr). 2011;50:918–25.

Article  Google Scholar 

Takayama Y, Kadoya N, Yamamoto T, Ito K, Chiba M, Fujiwara K, et al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region: Comparison between hybrid and intensity-based DIR. J Radiat Res. 2017;58:567–71.

Article  PubMed  PubMed Central  Google Scholar 

Motegi K, Tachibana H, Motegi A, Hotta K, Baba H, Akimoto T. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy. J Appl Clin Med Phys. 2019;20:229–36.

Article  PubMed  Google Scholar 

Dong X, Lei Y, Tian S, Wang T, Patel P, Curran WJ, et al. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Radiother Oncol. 2019;141:192–9. https://doi.org/10.1016/j.radonc.2019.09.028.

Article  PubMed  PubMed Central  Google Scholar 

Yang J, Veeraraghavan H, Armato SG, Farahani K, Kirby JS, Kalpathy-Kramer J, et al. Autosegmentation for thoracic radiation treatment planning: a grand challenge at AAPM 2017. Med Phys. 2018;45:4568–81.

Article  PubMed  PubMed Central  Google Scholar 

Wong J, Fong A, McVicar N, Smith S, Giambattista J, Wells D, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020;144:152–8. https://doi.org/10.1016/j.radonc.2019.10.019.

Article  PubMed  Google Scholar 

Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in auto-segmentation. Semin Radiat Oncol. 2019;29:185–97. https://doi.org/10.1016/j.semradonc.2019.02.001.

Article  PubMed  Google Scholar 

Xing L, Thorndyke B, Schreibmann E, Yang Y, Li TF, Kim GY, et al. Overview of image-guided radiation therapy. Med Dosim. 2006;31:91–112.

Article  PubMed  Google Scholar 

Léger J, Brion E, Desbordes P, De VC, Lee JA, Macq B. Cross-domain data augmentation for deep-learning-based male pelvic organ segmentation in cone beam CT. Appl Sci. 2020;10:1–15.

Article  Google Scholar 

Fu Y, Lei Y, Wang T, Tian S, Patel P, Jani AB, et al. Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy. Med Phys. 2020;47:3415–22.

Article  PubMed  Google Scholar 

Takeda K, Takai Y, Narazaki K, Mitsuya M, Umezawa R, Kadoya N, et al. Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan. Radiat Oncol. 2012;7:1–9.

Article  Google Scholar 

Umezawa R, Inaba K, Nakamura S, Wakita A, Okamoto H, Tsuchida K, et al. Dose escalation of external beam radiotherapy for high-risk prostate cancer—impact of multiple high-risk factor. Asian J Urol. 2019;6:192–9. https://doi.org/10.1016/j.ajur.2017.07.002.

Article  PubMed  Google Scholar 

Zhu L, Wang J, Xing L. Noise suppression in scatter correction for cone-beam CT. Med Phys. 2009;36:741–52.

Article  PubMed  PubMed Central  Google Scholar 

Ning R, Tang X, Conover D. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys. 2004;31:1195–202.

Article  PubMed  Google Scholar 

Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med. 2012;4:229–40.

Article  Google Scholar 

Gao H, Fahrig R, Bennett NR, Sun M, Star-Lack J, Zhu L. Scatter correction method for X-ray CT using primary modulation: phantom studies. Med Phys. 2010;37:934–46.

Article  PubMed  PubMed Central  Google Scholar 

Murphy MJ, Wei Z, Fatyga M, Williamson J, Anscher M, Wallace T, et al. How does CT image noise affect 3D deformable image registration for image-guided radiotherapy planning? Med Phys. 2008;35:1145–53.

Article  PubMed  Google Scholar 

Bagher-Ebadian H, Siddiqui F, Liu C, Movsas B, Chetty IJ. On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med Phys. 2017;44:1755–70.

Article  PubMed  Google Scholar 

Yang Y, Soatto S. FDA: Fourier domain adaptation for semantic segmentation. In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020. p. 4084–94.

Bootsma G, Verhaegen F, Jaffray D. SU-E-I-116: spatial frequency spectrum of the X-ray scatter distribution in CBCT. Med Phys. 2011;38:3422.

Article  Google Scholar 

Wang T, Zhu L. Image-domain non-uniformity correction for cone-beam CT. In: Proc—Int Symp Biomed Imaging. 2017. p. 680–3.

Urago Y, Okamoto H, Kaneda T, Murakami N, Kashihara T, Takemori M, et al. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models. Radiat Oncol. 2021;16:1–13. https://doi.org/10.1186/s13014-021-01896-1.

Article  Google Scholar 

Casati M, Piffer S, Calusi S, Marrazzo L, Simontacchi G, Di Cataldo V, et al. Methodological approach to create an atlas using a commercial auto-contouring software. J Appl Clin Med Phys. 2020;21:219–30.

Article  PubMed  PubMed Central  Google Scholar 

Warfield SK, Zou KH, Wells WM. Simultaneous Truth and Performance Level Estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging. 2004;23:903–21.

Article  PubMed  PubMed Central  Google Scholar 

Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a Spatial Overlap Index. Acad Radiol. 2004;11:178–89.

Article  PubMed  PubMed Central  Google Scholar 

Brion E, Léger J, Barragán-Montero AM, Meert N, Lee JA, Macq B. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Comput Biol Med. 2021;131.

Kida S, Kaji S, Nawa K, Imae T, Nakamoto T, Ozaki S, et al. Visual enhancement of Cone-beam CT by use of CycleGAN. Med Phys. 2020;47:998–1010.

Article  PubMed  Google Scholar 

Zhang Y, Yue N, Su MY, Liu B, Ding Y, Zhou Y, et al. Improving CBCT quality to CT level using deep learning with generative adversarial network. Med Phys. 2021;48:2816–26.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif