Chetty IJ, Fontenot J. Adaptive radiation therapy: off-line, on-line, and in-line? Int J Radiat Oncol Biol Phys. 2017;99:689–91. https://doi.org/10.1016/j.ijrobp.2017.07.017.
Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys. 2017;99:994–1003. https://doi.org/10.1016/j.ijrobp.2017.04.023.
Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, Overweg J, Brown KJ, Kerkhof EM, et al. MRI/linac integration. Radiother Oncol. 2008;86:25–9.
Werensteijn-Honingh AM, Kroon PS, Winkel D, Aalbers EM, van Asselen B, Bol GH, et al. Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol. 2019;134:50–4. https://doi.org/10.1016/j.radonc.2019.01.024.
Thor M, Petersen JBB, Bentzen L, Høyer M, Muren LP. Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncol (Madr). 2011;50:918–25.
Takayama Y, Kadoya N, Yamamoto T, Ito K, Chiba M, Fujiwara K, et al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region: Comparison between hybrid and intensity-based DIR. J Radiat Res. 2017;58:567–71.
Article PubMed PubMed Central Google Scholar
Motegi K, Tachibana H, Motegi A, Hotta K, Baba H, Akimoto T. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy. J Appl Clin Med Phys. 2019;20:229–36.
Dong X, Lei Y, Tian S, Wang T, Patel P, Curran WJ, et al. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Radiother Oncol. 2019;141:192–9. https://doi.org/10.1016/j.radonc.2019.09.028.
Article PubMed PubMed Central Google Scholar
Yang J, Veeraraghavan H, Armato SG, Farahani K, Kirby JS, Kalpathy-Kramer J, et al. Autosegmentation for thoracic radiation treatment planning: a grand challenge at AAPM 2017. Med Phys. 2018;45:4568–81.
Article PubMed PubMed Central Google Scholar
Wong J, Fong A, McVicar N, Smith S, Giambattista J, Wells D, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020;144:152–8. https://doi.org/10.1016/j.radonc.2019.10.019.
Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in auto-segmentation. Semin Radiat Oncol. 2019;29:185–97. https://doi.org/10.1016/j.semradonc.2019.02.001.
Xing L, Thorndyke B, Schreibmann E, Yang Y, Li TF, Kim GY, et al. Overview of image-guided radiation therapy. Med Dosim. 2006;31:91–112.
Léger J, Brion E, Desbordes P, De VC, Lee JA, Macq B. Cross-domain data augmentation for deep-learning-based male pelvic organ segmentation in cone beam CT. Appl Sci. 2020;10:1–15.
Fu Y, Lei Y, Wang T, Tian S, Patel P, Jani AB, et al. Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy. Med Phys. 2020;47:3415–22.
Takeda K, Takai Y, Narazaki K, Mitsuya M, Umezawa R, Kadoya N, et al. Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan. Radiat Oncol. 2012;7:1–9.
Umezawa R, Inaba K, Nakamura S, Wakita A, Okamoto H, Tsuchida K, et al. Dose escalation of external beam radiotherapy for high-risk prostate cancer—impact of multiple high-risk factor. Asian J Urol. 2019;6:192–9. https://doi.org/10.1016/j.ajur.2017.07.002.
Zhu L, Wang J, Xing L. Noise suppression in scatter correction for cone-beam CT. Med Phys. 2009;36:741–52.
Article PubMed PubMed Central Google Scholar
Ning R, Tang X, Conover D. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys. 2004;31:1195–202.
Boas FE, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med. 2012;4:229–40.
Gao H, Fahrig R, Bennett NR, Sun M, Star-Lack J, Zhu L. Scatter correction method for X-ray CT using primary modulation: phantom studies. Med Phys. 2010;37:934–46.
Article PubMed PubMed Central Google Scholar
Murphy MJ, Wei Z, Fatyga M, Williamson J, Anscher M, Wallace T, et al. How does CT image noise affect 3D deformable image registration for image-guided radiotherapy planning? Med Phys. 2008;35:1145–53.
Bagher-Ebadian H, Siddiqui F, Liu C, Movsas B, Chetty IJ. On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers. Med Phys. 2017;44:1755–70.
Yang Y, Soatto S. FDA: Fourier domain adaptation for semantic segmentation. In: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020. p. 4084–94.
Bootsma G, Verhaegen F, Jaffray D. SU-E-I-116: spatial frequency spectrum of the X-ray scatter distribution in CBCT. Med Phys. 2011;38:3422.
Wang T, Zhu L. Image-domain non-uniformity correction for cone-beam CT. In: Proc—Int Symp Biomed Imaging. 2017. p. 680–3.
Urago Y, Okamoto H, Kaneda T, Murakami N, Kashihara T, Takemori M, et al. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models. Radiat Oncol. 2021;16:1–13. https://doi.org/10.1186/s13014-021-01896-1.
Casati M, Piffer S, Calusi S, Marrazzo L, Simontacchi G, Di Cataldo V, et al. Methodological approach to create an atlas using a commercial auto-contouring software. J Appl Clin Med Phys. 2020;21:219–30.
Article PubMed PubMed Central Google Scholar
Warfield SK, Zou KH, Wells WM. Simultaneous Truth and Performance Level Estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging. 2004;23:903–21.
Article PubMed PubMed Central Google Scholar
Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a Spatial Overlap Index. Acad Radiol. 2004;11:178–89.
Article PubMed PubMed Central Google Scholar
Brion E, Léger J, Barragán-Montero AM, Meert N, Lee JA, Macq B. Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT. Comput Biol Med. 2021;131.
Kida S, Kaji S, Nawa K, Imae T, Nakamoto T, Ozaki S, et al. Visual enhancement of Cone-beam CT by use of CycleGAN. Med Phys. 2020;47:998–1010.
Zhang Y, Yue N, Su MY, Liu B, Ding Y, Zhou Y, et al. Improving CBCT quality to CT level using deep learning with generative adversarial network. Med Phys. 2021;48:2816–26.
Comments (0)