A novel hybrid convolutional and recurrent neural network model for automatic pituitary adenoma classification using dynamic contrast-enhanced MRI

Akhter MS, Kubra KT, Barabutis N. Protective effects of GHRH antagonists against hydrogen peroxide-induced lung endothelial barrier disruption. Endocrine. 2022;79(3):587–92.

Article  PubMed  PubMed Central  Google Scholar 

Giunti G, Michelis F, Halabi A, Koledova E, Harvey J, Dimitri P. The Pediatric Growth Hormone Deficiency Patient Journey: Identifying Opportunities for Digital Health Interventions. 2024.

Kadir ER, Hussein AO, Ojulari LS, Omotoso GO. Role of Pituitary Gland in Fertility Preservation. 2023.

Amir J, Guiot MC, Garfield N. Plurihormonal pituitary adenoma cosecreting ACTH and GH: a rare cause of Cushing’s disease. BMJ Case Rep. 2022;15(11): e251451.

Article  PubMed  PubMed Central  Google Scholar 

Badawod S, De B, Clarke DB, Imran SA. Atypical Presentation of Cushing’s Disease With Weight Loss and Hypokalemia. Endocrinol Diabetes Metab Case Rep. 2024;2024(3):1–3

AlNasrallah N, Aljenaee K, Almurshed M, Hajji S. Clinically Functioning Gonadotropin-Secreting Pituitary Adenoma. Endocrinol Diabetes Metab Case Rep. 2024;2024(1):1–3

Taheri MS, Ghomi Z, Mirshahi R, Moradpour M, Niroomand M, Yarmohamadi P, et al. Usefulness of subtraction images for accurate diagnosis of pituitary microadenomas in dynamic contrast-enhanced magnetic resonance imaging. Acta Radiol. 2022;64(3):1148–54.

Article  PubMed  Google Scholar 

Eisenhut F, Schmidt M, Buchfelder M, Doerfler A, Schlaffer S-M. Improved detection of cavernous sinus invasion of pituitary macroadenomas with ultra-high-field 7 T MRI. Life. 2022;13(1): 49.

Article  PubMed  PubMed Central  Google Scholar 

Elhaie M, Koozari A, Shahbazi-Gahrouei D. Machine learning and neural network approaches for enhanced measuring and prediction of radiation doses. J Radiat Res Appl Sci. 2025;18(1): 101252.

Google Scholar 

Alammari DM, Melebari RE, Alshaikh JA, Alotaibi LB, Basabeen HS, Saleh AF. Beyond boundaries: the role of artificial intelligence in shaping the future careers of medical students in Saudi Arabia. Cureus. 2024. https://doi.org/10.7759/cureus.69332.

Article  PubMed  PubMed Central  Google Scholar 

Dhar T, Dey N, Borra S, Sherratt RS. Challenges of deep learning in medical image analysis—improving explainability and trust. IEEE Trans Technol Soc. 2023;4(1):68–75.

Article  Google Scholar 

Dai C, Sun B, Wang R, Kang J. The application of artificial intelligence and machine learning in pituitary adenomas. Front Oncol. 2021;11: 784819.

Article  PubMed  PubMed Central  Google Scholar 

Fan Y, Jiang S, Hua M, Feng S, Feng M, Wang R. Machine learning-based radiomics predicts radiotherapeutic response in patients with acromegaly. Front Endocrinol. 2019;10: 588.

Article  Google Scholar 

Fuse Y, Takeuchi K, Hashimoto N, Nagata Y, Takagi Y, Nagatani T, et al. Deep learning based identification of pituitary adenoma on surgical endoscopic images: a pilot study. Neurosurg Rev. 2023;46(1): 291.

Article  PubMed  Google Scholar 

Hollon TC, Parikh A, Pandian B, Tarpeh J, Orringer DA, Barkan AL, et al. A machine learning approach to predict early outcomes after pituitary adenoma surgery. Neurosurg Focus. 2018;45(5): E8.

Article  PubMed  Google Scholar 

Li Q, Zhu Y, Chen M, Guo R, Hu Q, Lu Y, et al. Development and validation of a deep learning algorithm to automatic detection of pituitary microadenoma from MRI. Front Med. 2021. https://doi.org/10.3389/fmed.2021.758690.

Article  PubMed  PubMed Central  Google Scholar 

Han X, Tan J, He Y. Deep learning algorithm-based MRI image in the diagnosis of diabetic macular edema. Contrast Media Mol Imaging. 2022. https://doi.org/10.1155/2022/1035619.

Article  PubMed  PubMed Central  Google Scholar 

Makhlouf A, Maayah M, Abughanam N, Catal C. The use of generative adversarial networks in medical image augmentation. Neural Comput Appl. 2023;35(34):24055–68.

Article  Google Scholar 

Venugopal R, Shafqat N, Venugopal I, Tillbury BMJ, Stafford HD, Bourazeri A. Privacy preserving generative adversarial networks to model electronic health records. Neural Netw. 2022;153:339–48.

Article  PubMed  Google Scholar 

Li Q, Zhu Y, Chen M, Guo R, Hu Q, Lu Y, et al. Development and validation of a deep learning algorithm to automatic detection of pituitary microadenoma from MRI. Front Med. 2021;8: 758690.

Article  Google Scholar 

Zhu H, Fang Q, Huang Y, Xu K. Semi-supervised method for image texture classification of pituitary tumors via CycleGAN and optimized feature extraction. BMC Med Inform Decis Mak. 2020;20(1):215.

Article  PubMed  PubMed Central  Google Scholar 

Amano T, Masumoto T, Akutsu H, Sakamoto N, Hoshiai S, Mori K, et al. The utility of dynamic MRI in differentiating the hormone-producing ability of pituitary adenomas. Jpn J Radiol. 2021;39(8):741–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kwee TC, Kwee RM. Workload of diagnostic radiologists in the foreseeable future based on recent scientific advances: growth expectations and role of artificial intelligence. Insights Imaging. 2021;12(1):88.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif