Dosimetric impact of material misassignment in linear Boltzmann transport equation-based external beam radiotherapy dose calculation

International Commission on Radiation Units and Measurements (ICRU) Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. ICRU Report 24. Washington (DC), 1976.

Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol. 2010;55(3):581–98. https://doi.org/10.1088/0031-9155/55/3/002.

Article  PubMed  Google Scholar 

Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of AcurosXB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208–21. https://doi.org/10.1118/1.3567146.

Article  PubMed  Google Scholar 

Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of AcurosXB advanced dose calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82. https://doi.org/10.1186/1748-717X-6-82.

Article  PubMed  PubMed Central  Google Scholar 

Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of AcurosXB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38(5):2651–64. https://doi.org/10.1118/1.3582690.

Article  PubMed  PubMed Central  Google Scholar 

Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full monte carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2): 4662. https://doi.org/10.1120/jacmp.v15i2.4662.

Article  PubMed  Google Scholar 

Ojala JJ, Kapanen M. Quantification of dose differences between two versions of Acuros XB algorithm compared to Monte Carlo simulations—the effect on clinical patient treatment planning. J Appl Clin Med Phys. 2015;16(6):213–25. https://doi.org/10.1120/jacmp.v16i6.5642.

Article  PubMed  PubMed Central  Google Scholar 

DeMarco JJ, Solberg TD, Smathers JB. A CT-based monte carlo simulation tool for dosimetry planning and analysis. Med Phys. 1998;25(1):1–11. https://doi.org/10.1118/1.598167.

Article  PubMed  Google Scholar 

Ma CM, Mok E, Kapur A, et al. Clinical implementation of a monte carlo treatment planning system. Med Phys. 1999;26(10):2133–43. https://doi.org/10.1118/1.598729.

Article  PubMed  Google Scholar 

Wang L, Chui CS, Lovelock M. A patient-specific monte carlo dose-calculation method for photon beams. Med Phys. 1998;25(6):867–78. https://doi.org/10.1118/1.598262.

Article  PubMed  Google Scholar 

Vanderstraeten B, Chin PW, Fix M, et al. Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study. Phys Med Biol. 2007;52(3):539–62. https://doi.org/10.1088/0031-9155/52/3/001.

Article  PubMed  Google Scholar 

International Commission on Radiation Units and Measurements. Tissue substitutes in radiation dosimetry and measurements (ICRU Report 44). Bethesda: ICRU Publication; 1989.

Google Scholar 

International Commission on Radiological Protection (ICRP): “Reference Man: Anatomical, Physiological And Metabolic Characteristics”. ICRP Publication 23, Pergamon Press, Oxford, UK, (1975)

du Plessis FC, Willemse CA, Lotter MG, Goedhals L. The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients. Med Phys. 1998;25:1195–201. https://doi.org/10.1118/1.598297.

Article  PubMed  Google Scholar 

Andersson P, Pettersson N, Lindberg A, Swanpalmer J, Chakarova R. Effects of lung tissue characterization in radiotherapy of breast cancer under deep inspiration breath hold when using Monte Carlo dosimetry. Phys Med. 2021;90:83–90. https://doi.org/10.1016/j.ejmp.2021.09.009.

Article  PubMed  Google Scholar 

Verhaegen F, Devic S. Sensitivity study for CT image use in Monte Carlo treatment planning. Phys Med Biol. 2005;50(5):937–46. https://doi.org/10.1088/0031-9155/50/5/016.

Article  PubMed  Google Scholar 

Ottosson RO, Behrens CF. CTC-ask: a new algorithm for conversion of CT numbers to tissue parameters for Monte Carlo dose calculations applying DICOM RS knowledge. Phys Med Biol. 2011;56(22):N263–74. https://doi.org/10.1088/0031-9155/56/22/N01.

Article  PubMed  Google Scholar 

Seco J, Evans PM. Assessing the effect of electron density in photon dose calculations. Med Phys. 2006;33(2):540–52. https://doi.org/10.1118/1.2161407.

Article  PubMed  Google Scholar 

Cheung MLM, Chow VUY, Kan MWK, Chan ATC. The effect of material assignment in nasal cavity on dose calculation for nasopharyngeal carcinoma (NPC) using AcurosXB. J Appl Clin Med Phys. 2022;23(8): e13698. https://doi.org/10.1002/acm2.13698.

Article  PubMed  PubMed Central  Google Scholar 

Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. On the dosimetric impact of inhomogeneity management in the Acuros XB algorithm for breast treatment. Radiat Oncol. 2011;6:103. https://doi.org/10.1186/1748-717X-6-103.

Article  PubMed  PubMed Central  Google Scholar 

Varian Medical Systems. Eclipse Photon and Electron Algorithms Reference Guide. Version 16.1. Palo Alto, CA: Varian Medical Systems; 2020. P1044595–001-A.

Fang R, Mazur T, Mutic S, Khan R. The impact of mass density variations on an electron Monte Carlo algorithm for radiotherapy dose calculations. Phys Imaging Radiat Oncol. 2018;8:1–7. https://doi.org/10.1016/j.phro.2018.10.002.

Article  PubMed  PubMed Central  Google Scholar 

Zurl B, Tiefling R, Winkler P, Kindl P, Kapp KS. Hounsfield units variations: impact on CT-density based conversion tables and their effects on dose distribution. Strahlenther Onkol. 2014;190(1):88–93. https://doi.org/10.1007/s00066-013-0464-5.

Article  PubMed  Google Scholar 

Ehhalt DH, Rohrer F. The tropospheric cycle of H2: a critical review. Tellus B Chem Phys Meteorol. 2009;61(3):500–35. https://doi.org/10.1111/j.1600-0889.2009.00416.x.

Article  Google Scholar 

Hoffmann L, Jørgensen MB, Muren LP, Petersen JB. Clinical validation of the AcurosXB photon dose calculation algorithm, a grid-based Boltzmann equation solver. Acta Oncol. 2012;51(3):376–85. https://doi.org/10.3109/0284186X.2011.629209.

Article  PubMed  Google Scholar 

Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Accuracy of AcurosXB and AAA dose calculation for small fields with reference to RapidArc(®) stereotactic treatments. Med Phys. 2011;38(11):6228–37. https://doi.org/10.1118/1.3654739.

Article  PubMed  Google Scholar 

Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of AcurosXB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol. 2013;8:149. https://doi.org/10.1186/1748-717X-8-149.

Article  PubMed  PubMed Central  Google Scholar 

Tsuruta Y, Nakata M, Nakamura M, et al. Dosimetric comparison of AcurosXB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer. Med Phys. 2014;41(8): 081715. https://doi.org/10.1118/1.4890592.

Article  PubMed  Google Scholar 

Kan MW, Leung LH, Yu PK. Verification and dosimetric impact of AcurosXB algorithm on intensity modulated stereotactic radiotherapy for locally persistent nasopharyngeal carcinoma. Med Phys. 2012;39(8):4705–14. https://doi.org/10.1118/1.4736819.

Article  PubMed  Google Scholar 

Kan MW, Leung LH, So RW, Yu PK. Experimental verification of the AcurosXB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharyngeal carcinoma. Med Phys. 2013;40(3): 031714. https://doi.org/10.1118/1.4792308.

Article  PubMed  Google Scholar 

Rana S, Rogers K, Pokharel S, et al. AcurosXB algorithm vs. anisotropic analytical algorithm: a dosimetric study using heterogeneous phantom and computed tomography (CT) data sets of oesophageal cancer patients. J Cancer Ther. 2013;4:138–44. https://doi.org/10.4236/jct.2013.41019.

Article  Google Scholar 

Rana S, Rogers K. Dosimetric evaluation of AcurosXB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes. J Med Phys. 2013;38(1):9–14. https://doi.org/10.4103/0971-6203.106600.

Article  PubMed  PubMed Central  Google Scholar 

Rana S, Rogers K, Pokharel S, Cheng C. Evaluation of AcurosXB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc. J Appl Clin Med Phys. 2014;15(1): 4474. https://doi.org/10.1120/jacmp.v15i1.4474.

Article  PubMed  Google Scholar 

Han T, Mourtada F, Kisling K, Mikell J, Followill D, Howell R. Experimental validation of deterministic AcurosXB algorithm for IMRT and VMAT dose calculations with the radiological physics center’s head and neck phantom. Med Phys. 2012;39(4):2193–202. https://doi.org/10.1118/1.3692180.

Article 

Comments (0)

No login
gif