Understanding nonlinearity in statistical image reconstruction for nuclear medicine

Natterer F, Wubbeling F. Mathematical Methods in Image Reconstruction. Mathematical Modeling and Computation. SIAM. 2001. pp. 95–99.

Herman GT, Meyer LB. Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans Med Imaging. 1993;12:600–9.

Article  CAS  PubMed  Google Scholar 

Kaufman L. Maximum likelihood, least squares, and penalized least squares for PET. IEEE Trans Med Imaging. 1993;12:200–14.

Article  CAS  PubMed  Google Scholar 

Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.

Article  CAS  PubMed  Google Scholar 

Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994. https://doi.org/10.1109/42.363108.

Article  PubMed  Google Scholar 

De Pierro AR, Yamagishi MEB. Fast EM-like methods for maximum ‘a posteriori’ estimates in emission tomography. IEEE Trans Med Imaging. 2001;20:280–8.

Article  PubMed  Google Scholar 

Ahn S, Fessler JA. Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Tans Med Imaging. 2003;22:613–26.

Article  Google Scholar 

Green PJ. Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging. 1990;9:84–93.

Article  CAS  PubMed  Google Scholar 

Rudin L, Osher S, Fatemi E. Non-linear total variation noise removal algorithm. Phys D. 1992;60:259–68.

Article  Google Scholar 

Nuyts J, Bequé D, Dupont P, Mortelmans L. A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography. IEEE Trans Nucl Sci. 2002;49:56–60.

Article  Google Scholar 

Shinohara H, Hori K, Hashimoto T. Deep learning study on the mechanism of edge artifacts in point spread function reconstruction for numerical brain images. Ann Nucl Med. 2023;37:596–604.

Article  PubMed  Google Scholar 

Bouman C, Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process. 1993;2:296–310.

Article  CAS  PubMed  Google Scholar 

Wagatsuma K, Miwa K, Kamitaka Y, Koike E, Yamao T, Yoshii T, et al. Determination of optimal regularization factor in Bayesian penalized likelihood reconstruction of brain PET images using [18F] FDG and [11C] PIB. Med Phys. 2022;49:2995–3005.

Article  PubMed  Google Scholar 

Wilson DW, Tsui BMW. Spatial resolution properties of FBP and ML-EM reconstruction methods. IEEE Nucl Sci Symp Med Imaging Conference. 1993;2:1189–93.

Google Scholar 

Fessler JA, Rogers WL. Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs. IEEE Trans Image Processing. 1996;5:1346–58.

Article  CAS  Google Scholar 

Gong K, Cherry SR, Qi J. On the assessment of spatial resolution of PET systems with iterative image reconstruction. Phys Med Biol. 2016;61:N193–202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahn A, Leahy RM. Analysis of resolution and noise properties on nonquadratically regularized image reconstruction methods for PET. IEEE Trans Med Imaging. 2008;27:413–24.

Article  PubMed  Google Scholar 

Zeng GL. Medical image reconstruction. Springer. 2010. pp. 165–167.

Shinohara H, Hashimoto T. Object-dependent spatial resolution characteristics of OSEM (ordered subset expectation maximization) regularized with relative difference prior. Med Imag Tech. 2024;42:117–29.

Google Scholar 

NEMA NU 2–2012 Performance measurement for Positron Emission Tomographs (PET). National Electrical Manufacturer Association. 2013; VA: 9–11.

Cocosco CA, Kollokian V, Kwan RK-S, et al. Brainweb: Online interface to a 3D MRI simulated brain database. Neuroimage. 1997;5:425.

Google Scholar 

Hashimoto F, Ote K, Onishi Y. Pet image reconstruction incorporating deep image prior and a forward projection model. IEEE Trans Radiat Plasma Med Sci. 2022;6:841–6.

Article  Google Scholar 

Shinohara H, Hashimoto T. Mechanism of edge artifacts in PSF reconstruction. Med Imaging Technol. 2022;40:261–72.

Google Scholar 

Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained total variation minimization. Phys Med Biol. 2008;53:4777–807.

Article  PubMed  PubMed Central  Google Scholar 

Bilgic B, Goyal VK, Adalsteinsson E. Multi-contrast reconstruction with Bayesian compressed sensing. Magn Reson Med. 2011;66:1601–15.

Article  PubMed  PubMed Central  Google Scholar 

Hutton BF, Nuyts J, Zaidi H. Iterative reconstruction methods. In: Zaidi H (ed) Quantitative analysis in nuclear medicine imaging. Springer. 2006. pp.112–24,

Ibaraki M, Matsubara K, Shinohara Y, Shaidahara M, Sato K, Yamamoto H, et al. Brain partial volume correction with point spreading function reconstruction in high-resolution digital PET: comparison with an MR-based method in FDG imaging. Ann Nucl Med. 2022;36:717–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson DW, Tsui BMW, Barrett HH. Noise properties of the EM algorithm: II monte carlo simulations. Phys Med Biol. 1994;39:847–71.

Article  CAS  PubMed  Google Scholar 

Rahmin A, Qi J, Sossi V. Resolution modeling in PET imaging; theory, practice, benefits, and pitfalls. Med Phys. 2015;40: 064301.

Article  Google Scholar 

Comments (0)

No login
gif