Margin for compensating displacement of adrenal gland metastasis and fiducial marker along with respiratory phase in real-time motion-tracking radiation therapy

Ippolito E, D’Angelillo RM, Fiore M, Molfese E, Trodella L, Ramella S. SBRT: a viable option for treating adrenal gland metastases. Rep Pract Oncol Radiother. 2015;20:484–90. https://doi.org/10.1016/j.rpor.2015.05.009.

Article  PubMed  PubMed Central  Google Scholar 

Stumpf PK, Yorke ED, El Naqa I, Cuneo KC, Grimm J, Goodman KA. Modeling of tumor control probability in stereotactic body radiation therapy for adrenal tumors. Int J Radiat Oncol Biol Phys. 2021;110:217–26. https://doi.org/10.1016/j.ijrobp.2020.05.062.

Article  PubMed  PubMed Central  Google Scholar 

Buergy D, Würschmidt F, Gkika E, Hörner-Rieber J, Knippen S, Gerum S, et al. Stereotactic body radiotherapy of adrenal metastases-a dose-finding study. Int J Cancer. 2022;151:412–21. https://doi.org/10.1002/ijc.34017.

Article  CAS  PubMed  Google Scholar 

König L, Häfner MF, Katayama S, Koerber SA, Tonndorf-Martini E, Bernhardt D, et al. Stereotactic body radiotherapy (SBRT) for adrenal metastases of oligometastatic or oligoprogressive tumor patients. Radiat Oncol. 2020;15:30. https://doi.org/10.1186/s13014-020-1480-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helis CA, Hughes RT, Nieto K, Ufondu A, Daugherty EC, Farris MK. Adrenal SBRT: a multi-institutional review of treatment outcomes and toxicity. Clin Exp Metastasis. 2020;37:585–92. https://doi.org/10.1007/s10585-020-10052-0.

Article  PubMed  Google Scholar 

Plichta K, Camden N, Furqan M, Hejleh TA, Clamon GH, Zhang J, et al. SBRT to adrenal metastases provides high local control with minimal toxicity. Adv Radiat Oncol. 2017;2:581–7. https://doi.org/10.1016/j.adro.2017.07.011.

Article  PubMed  PubMed Central  Google Scholar 

Chen B, Hu Y, Liu J, Cao AN, Ye LX, Zeng ZC. Respiratory motion of adrenal gland metastases: analyses using four-dimensional computed tomography images. Phys Med. 2017;38:54–8. https://doi.org/10.1016/j.ejmp.2017.05.045.

Article  CAS  PubMed  Google Scholar 

de Kuijer M, van Egmond J, Kouwenhoven E, Bruijn-Krist D, Ceha H, Mast M. Breath-hold versus mid-ventilation in SBRT of adrenal metastases. Tech Innov Patient Support Radiat Oncol. 2019;12:23–7. https://doi.org/10.1016/j.tipsro.2019.11.007.

Article  PubMed  PubMed Central  Google Scholar 

Dhont J, Harden SV, Chee LYS, Aitken K, Hanna GG, Bertholet J. Image-guided radiotherapy to manage respiratory motion: lung and liver. Clin Oncol (R Coll Radiol). 2020;32:792–804. https://doi.org/10.1016/j.clon.2020.09.008.

Article  CAS  PubMed  Google Scholar 

Tanabe Y, Kiritani M, Deguchi T, Hira N, Tomimoto S. Patient-specific respiratory motion management using lung tumors vs fiducial markers for real-time tumor-tracking stereotactic body radiotherapy. Phys Imaging Radiat Oncol. 2022;25:100405. https://doi.org/10.1016/j.phro.2022.12.002.

Article  PubMed  PubMed Central  Google Scholar 

Hoekstra N, Habraken S, Swaak-Kragten A, Pignol JP, Hoogeman M. Fiducial marker motion relative to the tumor bed has a significant impact on PTV margins in partial breast irradiation. Radiother Oncol. 2021;163:1–6. https://doi.org/10.1016/j.radonc.2021.07.020.

Article  PubMed  Google Scholar 

Sun X, Dai Z, Xu M, Guo X, Su H, Li Y. Quantifying 6D tumor motion and calculating PTV margins during liver stereotactic radiotherapy with fiducial tracking. Front Oncol. 2022;12:1021119. https://doi.org/10.3389/fonc.2022.1021119.

Article  PubMed  PubMed Central  Google Scholar 

Nitta Y, Ueda Y, Murata S, Isono M, Ohira S, Masaoka A, et al. Setup accuracy and dose attenuation of a wooden immobilization system for lung stereotactic body radiotherapy. Rep Pract Oncol Radiother. 2022;27:809–20. https://doi.org/10.5603/RPOR.a2022.0089.

Article  PubMed  PubMed Central  Google Scholar 

Hardcastle N, Briggs A, Caillet V, et al. Quantification of the geometric uncertainty when using implanted markers as a surrogate for lung tumor motion. Med Phys. 2021;48:2724–32. https://doi.org/10.1002/mp.14788.

Article  PubMed  Google Scholar 

Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR, Storchi P, Méndez Romero A, Heijmen BJ. Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol. 2011;56:5445–68. https://doi.org/10.1088/0031-9155/56/17/001.

Article  CAS  PubMed  Google Scholar 

Akdeniz Y, Yegingil I, Yegingil Z. Effects of metal implants and a metal artifact reduction tool on calculation accuracy of AAA and Acuros XB algorithms in small fields. Med Phys. 2019;46:5326–35. https://doi.org/10.1002/mp.13819.

Article  PubMed  Google Scholar 

Gnanasambandam A, Raj NAN, K S. Effects of metal implants and validation of four treatment planning methods used for radiotherapy dose calculation. Rep Pract Oncol Radiother. 2022;27:821–31. https://doi.org/10.5603/RPOR.a2022.0098.

Article  PubMed  PubMed Central  Google Scholar 

Voravud N, Shin DM, Dekmezian RH, Dimery I, Lee JS, Hong WK. Implantation metastasis of carcinoma after percutaneous fine-needle aspiration biopsy. Chest. 1992;102:313–5. https://doi.org/10.1378/chest.102.1.313.

Article  CAS  PubMed  Google Scholar 

Tyagi R, Dey P. Needle tract seeding: an avoidable complication. Diagn Cytopathol. 2014;42:636–40. https://doi.org/10.1002/dc.23137.

Article  PubMed  Google Scholar 

Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs AK. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. 2007;33:437–47. https://doi.org/10.1016/j.ctrv.2007.04.001.

Article  CAS  PubMed  Google Scholar 

Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57:125–34. https://doi.org/10.1016/j.lungcan.2007.03.020.

Article  PubMed  Google Scholar 

Li F, Li Y, Wang X, Zhang Y, Liu X, Liu S, et al. Inter-observer and intra-observer variability in gross tumor volume delineation of primary esophageal carcinomas based on different combinations of diagnostic multimodal images. Front Oncol. 2022;12:817413. https://doi.org/10.3389/fonc.2022.817413.

Article  PubMed  PubMed Central  Google Scholar 

Chang X, Deng W, Wang X, Zhou Z, Yang J, Guo W, et al. Interobserver variability in target volume delineation in definitive radiotherapy for thoracic esophageal cancer: a multi-center study from China. Radiat Oncol. 2021;16:102. https://doi.org/10.1186/s13014-020-01691-4.

Article  PubMed  PubMed Central  Google Scholar 

Vinod SK, Min M, Jameson MG, Holloway LC. A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology. J Med Imaging Radiat Oncol. 2016;60:393–406. https://doi.org/10.1111/1754-9485.12462.

Article  PubMed  Google Scholar 

Roberge D, Skamene T, Turcotte RE, Powell T, Saran N, Freeman C. Inter- and intra-observer variation in soft-tissue sarcoma target definition. Cancer Radiother. 2011;15:421–5. https://doi.org/10.1016/j.canrad.2011.03.006.

Article  CAS  PubMed  Google Scholar 

Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE, Allen KJ, et al. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 2015;91(1):100–8. https://doi.org/10.1016/j.ijrobp.2014.09.004.

Article  PubMed  Google Scholar 

Grimm J, Marks LB, Jackson A, Kavanagh BD, Xue J, Yorke E. High dose per fraction, hypofractionated treatment effects in the clinic (HyTEC): an overview. Int J Radiat Oncol Biol Phys. 2021;110:1–10. https://doi.org/10.1016/j.ijrobp.2020.10.039.

Article  PubMed  PubMed Central  Google Scholar 

Steiner E, Shieh CC, Caillet V, Booth J, O’Brien R, Briggs A, et al. Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy. Radiother Oncol. 2019;135:65–73. https://doi.org/10.1016/j.radonc.2019.02.019.

Article 

Comments (0)

No login
gif