Ippolito E, D’Angelillo RM, Fiore M, Molfese E, Trodella L, Ramella S. SBRT: a viable option for treating adrenal gland metastases. Rep Pract Oncol Radiother. 2015;20:484–90. https://doi.org/10.1016/j.rpor.2015.05.009.
Article PubMed PubMed Central Google Scholar
Stumpf PK, Yorke ED, El Naqa I, Cuneo KC, Grimm J, Goodman KA. Modeling of tumor control probability in stereotactic body radiation therapy for adrenal tumors. Int J Radiat Oncol Biol Phys. 2021;110:217–26. https://doi.org/10.1016/j.ijrobp.2020.05.062.
Article PubMed PubMed Central Google Scholar
Buergy D, Würschmidt F, Gkika E, Hörner-Rieber J, Knippen S, Gerum S, et al. Stereotactic body radiotherapy of adrenal metastases-a dose-finding study. Int J Cancer. 2022;151:412–21. https://doi.org/10.1002/ijc.34017.
Article CAS PubMed Google Scholar
König L, Häfner MF, Katayama S, Koerber SA, Tonndorf-Martini E, Bernhardt D, et al. Stereotactic body radiotherapy (SBRT) for adrenal metastases of oligometastatic or oligoprogressive tumor patients. Radiat Oncol. 2020;15:30. https://doi.org/10.1186/s13014-020-1480-0.
Article CAS PubMed PubMed Central Google Scholar
Helis CA, Hughes RT, Nieto K, Ufondu A, Daugherty EC, Farris MK. Adrenal SBRT: a multi-institutional review of treatment outcomes and toxicity. Clin Exp Metastasis. 2020;37:585–92. https://doi.org/10.1007/s10585-020-10052-0.
Plichta K, Camden N, Furqan M, Hejleh TA, Clamon GH, Zhang J, et al. SBRT to adrenal metastases provides high local control with minimal toxicity. Adv Radiat Oncol. 2017;2:581–7. https://doi.org/10.1016/j.adro.2017.07.011.
Article PubMed PubMed Central Google Scholar
Chen B, Hu Y, Liu J, Cao AN, Ye LX, Zeng ZC. Respiratory motion of adrenal gland metastases: analyses using four-dimensional computed tomography images. Phys Med. 2017;38:54–8. https://doi.org/10.1016/j.ejmp.2017.05.045.
Article CAS PubMed Google Scholar
de Kuijer M, van Egmond J, Kouwenhoven E, Bruijn-Krist D, Ceha H, Mast M. Breath-hold versus mid-ventilation in SBRT of adrenal metastases. Tech Innov Patient Support Radiat Oncol. 2019;12:23–7. https://doi.org/10.1016/j.tipsro.2019.11.007.
Article PubMed PubMed Central Google Scholar
Dhont J, Harden SV, Chee LYS, Aitken K, Hanna GG, Bertholet J. Image-guided radiotherapy to manage respiratory motion: lung and liver. Clin Oncol (R Coll Radiol). 2020;32:792–804. https://doi.org/10.1016/j.clon.2020.09.008.
Article CAS PubMed Google Scholar
Tanabe Y, Kiritani M, Deguchi T, Hira N, Tomimoto S. Patient-specific respiratory motion management using lung tumors vs fiducial markers for real-time tumor-tracking stereotactic body radiotherapy. Phys Imaging Radiat Oncol. 2022;25:100405. https://doi.org/10.1016/j.phro.2022.12.002.
Article PubMed PubMed Central Google Scholar
Hoekstra N, Habraken S, Swaak-Kragten A, Pignol JP, Hoogeman M. Fiducial marker motion relative to the tumor bed has a significant impact on PTV margins in partial breast irradiation. Radiother Oncol. 2021;163:1–6. https://doi.org/10.1016/j.radonc.2021.07.020.
Sun X, Dai Z, Xu M, Guo X, Su H, Li Y. Quantifying 6D tumor motion and calculating PTV margins during liver stereotactic radiotherapy with fiducial tracking. Front Oncol. 2022;12:1021119. https://doi.org/10.3389/fonc.2022.1021119.
Article PubMed PubMed Central Google Scholar
Nitta Y, Ueda Y, Murata S, Isono M, Ohira S, Masaoka A, et al. Setup accuracy and dose attenuation of a wooden immobilization system for lung stereotactic body radiotherapy. Rep Pract Oncol Radiother. 2022;27:809–20. https://doi.org/10.5603/RPOR.a2022.0089.
Article PubMed PubMed Central Google Scholar
Hardcastle N, Briggs A, Caillet V, et al. Quantification of the geometric uncertainty when using implanted markers as a surrogate for lung tumor motion. Med Phys. 2021;48:2724–32. https://doi.org/10.1002/mp.14788.
Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR, Storchi P, Méndez Romero A, Heijmen BJ. Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol. 2011;56:5445–68. https://doi.org/10.1088/0031-9155/56/17/001.
Article CAS PubMed Google Scholar
Akdeniz Y, Yegingil I, Yegingil Z. Effects of metal implants and a metal artifact reduction tool on calculation accuracy of AAA and Acuros XB algorithms in small fields. Med Phys. 2019;46:5326–35. https://doi.org/10.1002/mp.13819.
Gnanasambandam A, Raj NAN, K S. Effects of metal implants and validation of four treatment planning methods used for radiotherapy dose calculation. Rep Pract Oncol Radiother. 2022;27:821–31. https://doi.org/10.5603/RPOR.a2022.0098.
Article PubMed PubMed Central Google Scholar
Voravud N, Shin DM, Dekmezian RH, Dimery I, Lee JS, Hong WK. Implantation metastasis of carcinoma after percutaneous fine-needle aspiration biopsy. Chest. 1992;102:313–5. https://doi.org/10.1378/chest.102.1.313.
Article CAS PubMed Google Scholar
Tyagi R, Dey P. Needle tract seeding: an avoidable complication. Diagn Cytopathol. 2014;42:636–40. https://doi.org/10.1002/dc.23137.
Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs AK. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. 2007;33:437–47. https://doi.org/10.1016/j.ctrv.2007.04.001.
Article CAS PubMed Google Scholar
Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57:125–34. https://doi.org/10.1016/j.lungcan.2007.03.020.
Li F, Li Y, Wang X, Zhang Y, Liu X, Liu S, et al. Inter-observer and intra-observer variability in gross tumor volume delineation of primary esophageal carcinomas based on different combinations of diagnostic multimodal images. Front Oncol. 2022;12:817413. https://doi.org/10.3389/fonc.2022.817413.
Article PubMed PubMed Central Google Scholar
Chang X, Deng W, Wang X, Zhou Z, Yang J, Guo W, et al. Interobserver variability in target volume delineation in definitive radiotherapy for thoracic esophageal cancer: a multi-center study from China. Radiat Oncol. 2021;16:102. https://doi.org/10.1186/s13014-020-01691-4.
Article PubMed PubMed Central Google Scholar
Vinod SK, Min M, Jameson MG, Holloway LC. A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology. J Med Imaging Radiat Oncol. 2016;60:393–406. https://doi.org/10.1111/1754-9485.12462.
Roberge D, Skamene T, Turcotte RE, Powell T, Saran N, Freeman C. Inter- and intra-observer variation in soft-tissue sarcoma target definition. Cancer Radiother. 2011;15:421–5. https://doi.org/10.1016/j.canrad.2011.03.006.
Article CAS PubMed Google Scholar
Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE, Allen KJ, et al. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 2015;91(1):100–8. https://doi.org/10.1016/j.ijrobp.2014.09.004.
Grimm J, Marks LB, Jackson A, Kavanagh BD, Xue J, Yorke E. High dose per fraction, hypofractionated treatment effects in the clinic (HyTEC): an overview. Int J Radiat Oncol Biol Phys. 2021;110:1–10. https://doi.org/10.1016/j.ijrobp.2020.10.039.
Article PubMed PubMed Central Google Scholar
Steiner E, Shieh CC, Caillet V, Booth J, O’Brien R, Briggs A, et al. Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy. Radiother Oncol. 2019;135:65–73. https://doi.org/10.1016/j.radonc.2019.02.019.
Comments (0)