Petkov, S. The fitness landscape metaphor: dead but not gone. http://journals.openedition.org/philosophiascientiae19, 159–174 (2015).
Mustonen, V. & Lässig, M. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet. 25, 111–119 (2009).
Article CAS PubMed Google Scholar
Lenski, R. E. & Travisano, M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl Acad. Sci. U.S.A. 91, 6808–6814 (1994).
Article CAS PubMed PubMed Central Google Scholar
Segers, A. & Depoortere, I. Circadian clocks in the digestive system. Nat. Rev. Gastroenterol. Hepatol. 18, 239–251 (2021).
Yang, Y. & Zhang, J. Bile acid metabolism and circadian rhythms. Am. J. Physiol. Gastrointest. Liver Physiol. 319, G549–G563 (2020).
Article CAS PubMed Google Scholar
Frazier, K. & Chang, E. B. Intersection of the gut microbiome and circadian rhythms in metabolism. Trends Endocrinol. Metab. 31, 25–36 (2020).
Article CAS PubMed Google Scholar
Wang, Y. et al. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357, 912–916 (2017).
Article CAS PubMed PubMed Central Google Scholar
He, C. et al. Circadian rhythm disruption influenced hepatic lipid metabolism, gut microbiota and promoted cholesterol gallstone formation in mice. Front. Endocrinol. 12, 723918 (2021).
Stearns, J. C. et al. Bacterial biogeography of the human digestive tract. Sci. Rep. 1, 170 (2011).
Article CAS PubMed PubMed Central Google Scholar
Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2015).
Article PubMed PubMed Central Google Scholar
Cheng, H. M., Mah, K. K. & Seluakumaran, K. Intestinal Fluid Handling: Absorption. Defin. Physiol. Princ. Themes Concepts 2, 47–49 (2020).
Hoces, D. et al. Fitness advantage of Bacteroides thetaiotaomicron capsular polysaccharide is dependent on the resident microbiota. bioRxiv https://doi.org/10.1101/2022.06.19.496708 (2022).
Cremer, J., Arnoldini, M. & Hwa, T. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc. Natl Acad. Sci. U.S.A. 114, 6438–6443 (2017).
Article CAS PubMed PubMed Central Google Scholar
Arnoldini, M., Cremer, J. & Hwa, T. Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes 1–8 https://doi.org/10.1080/19490976.2018.1448741 (2018).
Nguyen, J., Lara-Gutiérrez, J. & Stocker, R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol. Rev. 45, fuaa068 (2021).
Bell, G. Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philos. Trans. R. Soc. B Biol. Sci. 365, 87–97 (2010).
Roemhild, R., Barbosa, C., Beardmore, R. E., Jansen, G. & Schulenburg, H. Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa. Evol. Appl 8, 945–955 (2015).
Article CAS PubMed PubMed Central Google Scholar
Barreto, H. C., Abreu, B. & Gordo, I. Fluctuating selection on bacterial iron regulation in the mammalian gut. Curr. Biol. 32, 3261–3275.e4 (2022).
Article CAS PubMed Google Scholar
Dapa, T., Ramiro, R. S., Pedro, M. F., Gordo, I. & Xavier, K. B. Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host Microbe 30, 183–199.e10 (2022).
Article CAS PubMed Google Scholar
Hartl, D. L. & Clark, A. G. Principles of Population Genetics. (Sinauer, 2007).
Groisman, E. A. & Ochman, H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87, 791–794 (1996).
Article CAS PubMed Google Scholar
McInnes, R. S., McCallum, G. E., Lamberte, L. E. & van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 53, 35–43 (2020).
Article CAS PubMed Google Scholar
Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. U.S.A. 116, 17906–17915 (2019).
Article PubMed PubMed Central Google Scholar
Barreto, H. C., Abreu, B. & Gordo, I. Fluctuating selection on bacterial iron regulation in the mammalian gut. Curr. Biol. https://doi.org/10.1016/J.CUB.2022.06.017 (2022).
Barroso-Batista, J. et al. The first steps of adaptation of escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10, e1004182 (2014).
Article PubMed PubMed Central Google Scholar
Diard, M. et al. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat. Microbiol. 6, 830–841 (2021).
Article CAS PubMed PubMed Central Google Scholar
Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).
Article CAS PubMed Google Scholar
Ghalayini, M. et al. Long-term evolution of the natural isolate of Escherichia coli 536 in the mouse gut colonized after maternal transmission reveals convergence in the constitutive expression of the lactose operon. Mol. Ecol. 28, 4470–4485 (2019).
Article CAS PubMed Google Scholar
Lescat, M. et al. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin-treated mouse gut. Mol. Ecol. 26, 1802–1817 (2017).
Article CAS PubMed Google Scholar
Yilmaz, B. et al. Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host Microbe 29, 650–663.e9 (2021).
Article CAS PubMed Google Scholar
Diard, M. et al. Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium. Curr. Biol. 24, 2000–2005 (2014).
Article CAS PubMed Google Scholar
Patrick, S. et al. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology 156, 3255–3269 (2010).
Article CAS PubMed PubMed Central Google Scholar
Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A subset of polysaccharide capsules in the human symbiont bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.e8 (2017).
Article CAS PubMed PubMed Central Google Scholar
Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).
Article CAS PubMed PubMed Central Google Scholar
Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).
Article CAS PubMed PubMed Central Google Scholar
Kashyap, P. C. et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc. Natl Acad. Sci. USA 110, 17059–17064 (2013).
Article CAS PubMed PubMed Central Google Scholar
Tropini, C. How the physical environment shapes the microbiota. mSystems 6, e0067521 (2021).
Tropini, C. et al. Transient osmotic perturbation c
Comments (0)