s KM71H Attenuates Cognitive Deficits and Depressive-Like Behavior by the TLR4/NF-κB Signaling Pathway in an Aβ-Induced AD-Like Mouse Model

FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Joint FAO/WHO Expert Consultation

Didari T, Solki S, Mozaffari S, Nikfar S, Abdollahi M (2014) A systematic review of the safety of probiotics. Expert Opin Drug Safety 13(2):227–39

Google Scholar 

Shruthi B, Deepa N, Somashekaraiah R, Adithi G, Divyashree S, Sreenivasa MY (2022) Exploring biotechnological and functional characteristics of probiotic yeasts: a review. Biotechnol Rep (Amst) 34:e00716. https://doi.org/10.1016/j.btre.2022.e00716

Article  CAS  PubMed  Google Scholar 

Gil-Rodríguez AM, Carrascosa AV, Requena T (2015) Yeasts in foods and beverages: in vitro characterisation of probiotic traits. LWT-Food Sci Technol 64(2):1156–62

Google Scholar 

Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K (2009) Chappell TJMie. Express Yeast Pichia Pastoris 463:169–189

CAS  Google Scholar 

Franca RC, Conceicao FR, Mendonca M, Haubert L, Sabadin G, de Oliveira PD, Amaral MG, Silva WP, Moreira AN (2015) Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Appl Microbiol Biotechnol 99(19):7953–7961. https://doi.org/10.1007/s00253-015-6696-9

Article  CAS  PubMed  Google Scholar 

Birmann PT, Casaril AM, Pesarico AP, Caballero PS, Smaniotto TÂ, Rodrigues RR, Moreira ÂN, Conceição FR, Sousa FS, Collares T, Seixas FK (2021) Komagataella pastoris KM71H modulates neuroimmune and oxidative stress parameters in animal models of depression: a proposal for a new probiotic with antidepressant-like effect. Pharmacologic Res 1(171):105740. https://doi.org/10.1016/j.phrs.2021.105740

Article  CAS  Google Scholar 

Birmann PT, Casaril AM, Pesarico AP, Rodrigues RR, Conceicao FR, Sousa FSS, Collares T, Seixas FK, Savegnago L (2023) Komagataella pastoris KM71H mitigates depressive-like phenotype, preserving intestinal barrier integrity and modulating the gut microbiota in mice. Mol Neurobiol. https://doi.org/10.1007/s12035-023-03326-7

Article  PubMed  Google Scholar 

Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, Xu W, Li JQ, Wang J, Lai TJ, Yu JT (2016) The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J Affect Disord 190:264–71

PubMed  Google Scholar 

Caraci F, Copani A, Nicoletti F, Drago F (2010) Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol 626(1):64–71. https://doi.org/10.1016/j.ejphar.2009.10.022

Article  CAS  PubMed  Google Scholar 

Lewis CK, Bernstein OM, Grill JD, Gillen DL, Sultzer DL (2022) Anxiety and depressive symptoms and cortical amyloid-beta burden in cognitively unimpaired older adults. J Prev Alzheimers Dis 9(2):286–296. https://doi.org/10.14283/jpad.2022.13

Article  CAS  PubMed  Google Scholar 

Lista S, Munafo A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-Pais M, Crespo-Escobar P, Lopez-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A (2025) Gut microbiota in Alzheimer’s disease: understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 104:102659. https://doi.org/10.1016/j.arr.2025.102659

Article  CAS  PubMed  Google Scholar 

Xu W, Feng W, Shen XN, Bi YL, Ma YH, Li JQ, Dong Q, Tan L, Alzheimer’s Disease Neuroimaging I, Yu JT (2021) Amyloid pathologies modulate the associations of minimal depressive symptoms with cognitive impairments in older adults without dementia. Biol Psychiatry 89(8):766–775. https://doi.org/10.1016/j.biopsych.2020.07.004

Article  CAS  PubMed  Google Scholar 

Long-Smith C, O’Riordan KJ, Clarke G, Stanton C, Dinan TG (2020) Cryan JFJArop, toxicology. Microbiota-gut-Brain axis: New Therapeutic Opportunit 60:477–502

CAS  Google Scholar 

Morais LH, Schreiber HL IV, Mazmanian SK (2021) The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–55

CAS  PubMed  Google Scholar 

Liu S, Gao J, Liu K, Zhang HL (2021) Microbiota-gut-brain axis and Alzheimer’s disease: implications of the blood-brain barrier as an intervention target. Mech Ageing Dev 199:111560. https://doi.org/10.1016/j.mad.2021.111560

Article  CAS  PubMed  Google Scholar 

Ren Y, Wu S, Xia Y, Huang J, Ye J, Xuan Z, Li P, Du B (2021) Probiotic-fermented black tartary buckwheat alleviates hyperlipidemia and gut microbiota dysbiosis in rats fed with a high-fat diet. Food Funct 12(13):6045–57

CAS  PubMed  Google Scholar 

Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M, Rossi G, Eleuteri AM (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43. https://doi.org/10.1016/j.neurobiolaging.2019.11.004

Article  CAS  PubMed  Google Scholar 

Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK (2020) Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease. Neurobiol Aging 92:114–134. https://doi.org/10.1016/j.neurobiolaging.2020.04.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mombelli E, Marizzoni M, Lopizzo N, Rosa M, Moretti DV, Cattaneo A. P. 0741 Effect of a probiotic administration on inflammatory profile and clinical features in patients with Alzheimer's disease. European Neuropsychopharmacology. 53:S541.

Shamsipour S, Sharifi G, Taghian F (2021) Impact of interval training with probiotic (L. plantarum / Bifidobacterium bifidum) on passive avoidance test, ChAT and BDNF in the hippocampus of rats with Alzheimer’s disease. Neurosci Lett 756:135949. https://doi.org/10.1016/j.neulet.2021.135949

Article  CAS  PubMed  Google Scholar 

Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12(1):12–15. https://doi.org/10.1111/j.1476-5381.1957.tb01354.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bampi SR, Casaril AM, Sabedra Sousa FS, Pesarico AP, Vieira B, Lenardao EJ, Savegnago L (2019) Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice. Pharmacol Biochem Behav 183:46–55. https://doi.org/10.1016/j.pbb.2019.06.006

Article  CAS  PubMed  Google Scholar 

Birmann PT, Casaril AM, Hartwig D, Jacob RG, Seixas FK, Collares T, Savegnago L (2020) A novel pyrazole-containing selenium compound modulates the oxidative and nitrergic pathways to reverse the depression-pain syndrome in mice. Brain Res 1741:146880. https://doi.org/10.1016/j.brainres.2020.146880

Article  CAS  PubMed  Google Scholar 

Xiong B, Li A, Lou Y, Chen S, Long B, Peng J, Yang Z, Xu T, Yang X, Li X, Jiang T, Luo Q, Gong H (2017) Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front Neuroanat 11:128. https://doi.org/10.3389/fnana.2017.00128

Article  PubMed  PubMed Central  Google Scholar 

Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482–504

CAS  PubMed  Google Scholar 

Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370. https://doi.org/10.1007/BF00428203

Article  CAS  PubMed  Google Scholar 

Sarter M, Bodewitz G, Stephens DN (1988) Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology 94(4):491–495. https://doi.org/10.1007/BF00212843

Article  CAS  PubMed  Google Scholar 

Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, Ramanantsoa N, Gallego J, Ronnenberg A, Winter D, Frahm J, Fischer J, Bourgeron T, Ehrenreich H, Brose N (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci U S A 105(5):1710–1715. https://doi.org/10.1073/pnas.0711555105

Article  PubMed  PubMed Central  Google Scholar 

Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin J-P, Mankhetkorn SJRP, Chemistry (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′, 7′-dichlorofluorescein diacetate assay. 72 (2–3):323–331

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Article  CAS  PubMed  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72(1–2):248–54

CAS  PubMed  Google Scholar 

Comments (0)

No login
gif