Feigin VL, Vos T, Nichols E et al (2020) The global burden of neurological disorders: translating evidence into policy. Lancet Neurol 19:255–265
GBD 2021 Nervous System Disorders Collaborators (2024) Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol 23:344–381
Sung C, Oh SJ, Kim JS (2024) Imaging procedure and clinical studies of [18F]FP-CIT PET. Nucl Med Mol Imaging 58:185–202
PubMed PubMed Central Google Scholar
Chapleau M, Iaccarino L, Soleimani-Meigooni D, Rabinovici GD (2022) The role of amyloid pet in imaging neurodegenerative disorders: a review. J Nucl Med 63:13S-19S
CAS PubMed PubMed Central Google Scholar
Politis M (2014) Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol 10:708–722
Han IT, Ha CK, Hong CG et al (2012) Behavioral and psychological symptoms in patients with parkinson’s disease according to cognitive function. Dementia Neurocognit Disord 11(3):104–10
Iagaru A, Mittra E, Yaghoubi SS et al (2009) Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med 50:501–505
Harisankar CN, Agrawal K, Bhattacharya A, Mittal BR (2014) F-18 fluoro-deoxy-glucose and F-18 sodium fluoride cocktail PET/CT scan in patients with breast cancer having equivocal bone SPECT/CT. Indian J Nucl Med 29:81–86
PubMed PubMed Central Google Scholar
Roop MJ, Singh B, Singh H et al (2017) Incremental value of cocktail 18F-FDG and 18F-NaF PET/CT over 18F-FDG PET/CT alone for characterization of skeletal metastases in breast cancer. Clin Nucl Med 42:335–340
Li XF, Huang T, Jiang H et al (2013) Combined injection of 18F-Fluorodeoxyglucose and 3’-Deoxy-3’-[18F]fluorothymidine PET achieves more complete identification of viable lung cancer cells in mice and patients than individual radiopharmaceutical: a proof-of-concept study. Transl Oncol 6:775–783
PubMed PubMed Central Google Scholar
Zhu S, Pang Y, Zhang X et al (2024) Alteration of thyroid hormones in mouse models of alzheimer’s disease and aging. Neuroendocrinology 114:411–422
Deng P, Fan T, Gao P et al (2024) SIRT5-mediated desuccinylation of RAB7A protects against cadmium-induced alzheimer’s disease-like pathology by restoring autophagic flux. Adv Sci. 11(30):2402030
Zhang C, Qi H, Jia D et al (2024) Cognitive impairment in Alzheimer’s disease FAD(4T) mouse model: Synaptic loss facilitated by activated microglia via C1qA. Life Sci 340:122457
Franco R, Rivas-Santisteban R, Navarro G, Pinna A, Reyes-Resina I (2021) Genes implicated in familial Parkinson’s disease provide a dual picture of nigral dopaminergic neurodegeneration with mitochondria taking center stage. Int J Molecul Sci 22(9):4643
Wu Y, Wang J, Deng Y et al (2024) Lipid and transcriptional regulation in a parkinson’s disease mouse model by intranasal vesicular and hexosomal plasmalogen-based nanomedicines. Adv Healthc Mater 13:e2304588
Son JW, Kim KY, Park JY et al (2020) SimPET: a preclinical PET insert for simultaneous PET/MR imaging. Mol Imaging Biol 22:1208–1217
Bae SW, Berlth F, Jeong KY et al (2020) Establishment of a [18F]-FDG-PET/MRI imaging protocol for gastric cancer PDX as a preclinical research tool. J Gastric Cancer 20:60–71
PubMed PubMed Central Google Scholar
Shin KH, Park SA, Kim SY, Lee SJ, Oh SJ, Kim JS (2012) Effect of animal condition and fluvoxamine on the result of [18F]N-3-Fluoropropyl-2beta-carbomethoxy-3beta-(4-iodophenyl) nortropane ([18F]FP-CIT) PET study in mice. Nucl Med Mol Imaging 46:27–33
Im HJ, Hwang DW, Lee HK et al (2013) In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease. Mol Imaging 12:224–234
Rominger A, Brendel M, Burgold S et al (2013) Longitudinal assessment of cerebral beta-amyloid deposition in mice overexpressing Swedish mutant beta-amyloid precursor protein using 18F-florbetaben PET. J Nucl Med 54:1127–1134
Son HJ, Jeong YJ, Yoon HJ et al (2018) Assessment of brain beta-amyloid deposition in transgenic mouse models of Alzheimer’s disease with PET imaging agents 18F-flutemetamol and 18F-florbetaben. BMC Neurosci 19:45
PubMed PubMed Central Google Scholar
Mirrione MM, Schiffer WK, Fowler JS, Alexoff DL, Dewey SL, Tsirka SE (2007) A novel approach for imaging brain-behavior relationships in mice reveals unexpected metabolic patterns during seizures in the absence of tissue plasminogen activator. Neuroimage 38:34–42
Ma Y, Hof PR, Grant SC et al (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135:1203–1215
Conover WJ (1999) Practical non-parametric statistics, 3rd edn. John Wiley & Sons, New York
Jensen AL, Kjelgaard-Hansen M (2010) Diagnostic test validation. In: Weiss D, Wardrop KJ (eds) Schalm's veterinary hematology, 6th edn. Wiley-Blackwell, Ames, pp 1027–1033
Morbelli S, Esposito G, Arbizu J et al (2020) EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging 47:1885–1912
PubMed PubMed Central Google Scholar
Minoshima S, Drzezga AE, Barthel H et al (2016) SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med 57:1316–1322
Brendel M, Yousefi BH, Blume T et al (2018) Comparison of 18F–T807 and 18F-THK5117 PET in a mouse model of tau pathology. Front Aging Neurosci 10:174
PubMed PubMed Central Google Scholar
Ottoy J, Verhaeghe J, Niemantsverdriet E et al (2017) Validation of the semiquantitative static SUVR method for 18F-AV45 PET by pharmacokinetic modeling with an arterial input function. J Nucl Med 58:1483–1489
Shibutani T, Onoguchi M, Kanno T, Kinuya S (2024) Influence of spill-over for 99mTc images and the effect of scatter correction for dual-isotope simultaneous acquisition with 99mTc and 18F using small-animal SPECT-PET/CT system. Phys Eng Sci Med 47:135–142
Pratt EC, Lopez-Montes A, Volpe A et al (2023) Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat Biomed Eng 7:1028–1039
CAS PubMed PubMed Central Google Scholar
Taheri N, Le Crom B et al (2023) Design of a generic method for single dual-tracer PET imaging acquisition in clinical routine. Phys Med Biol 68(8):085016
Comments (0)