Ding Q, Liu S, Yao Y et al (2022) Global, regional, and national burden of ischemic stroke, 1990–2019. Neurology 98:e279–e290. https://doi.org/10.1212/WNL.0000000000013115
Pu L, Wang L, Zhang R et al (2023) Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke 54:1330–1339. https://doi.org/10.1161/STROKEAHA.122.040073
Wang T, Li C, Li S, Tang P, Guo Q, Fang L (2024) High-resolution magnetic resonance imaging features of time-of-flight magnetic resonance angiography signal loss and its relevance to ischemic stroke. Quantitat Imag Med Surg 14:6820-6829. https://doi.org/10.21037/qims-24-329
You SH, Kim B, Kim BK, Suh SI (2018) MR Imaging for differentiating contrast staining from hemorrhagic transformation after endovascular thrombectomy in acute ischemic stroke: phantom and patient study. Am J Neuroradiol 39:2313–2319. https://doi.org/10.3174/ajnr.A5848
Yao YG, Lu L, Ni RJ et al (2024) Study of tree shrew biology and models: a booming and prosperous field for biomedical research. Zool Res 45:877–909. https://doi.org/10.24272/j.issn.2095-8137.2024.199
Ye MS, Zhang JY, Yu DD et al (2021) Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing. Zool Res 42:692–709. https://doi.org/10.24272/j.issn.2095-8137.2021.272
Li H, Xiang BL, Li X et al (2023) Cognitive deficits and Alzheimer’s disease-like pathologies in the aged Chinese tree shrew. Mol Neurobiol 61:1892–1906. https://doi.org/10.1007/s12035-023-03663-7
Xu L, Yu DD, Ma YH et al (2020) COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zool Res 41:517–526. https://doi.org/10.24272/j.issn.2095-8137.2020.053
Wang YY, Niu RZ, Wang JD et al (2019) Establishment of brain ischemia model in tree shrew. Brain Res 1718:194–200. https://doi.org/10.1016/j.brainres.2019.05.011
Essig M, Nguyen TB, Shiroishi MS et al (2013) Perfusion MRI: the five most frequently asked clinical questions. Am J Roentgenol 201:W495–W510. https://doi.org/10.2214/AJR.12.9544
Molad JA, Findler M, Auriel E (2017) Computed tomography perfusion-based decision making for acute ischemic stroke—missing the mismatch. J Stroke Cerebrovasc Dis 26:e78–e79. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.03.001
Article CAS PubMed Google Scholar
Leung TW, Wong KSL (2009) Thrombolysis with alteplase for acute ischemic stroke: safe and effective outside the 3-hour time window? Nat Rev Neurol 5:70–71. https://doi.org/10.1038/ncpneuro0993
Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217. https://doi.org/10.1038/nature03808
Article CAS PubMed Google Scholar
Yin L, Li W, Du Y et al (2022) Recent developments of the reconstruction in magnetic particle imaging. Vis Comput Ind Biomed Art 5:24. https://doi.org/10.1186/s42492-022-00120-5
Zhang B, Zhang H, Gao P et al (2024) Magnetic field strength encoded handheld magnetic particle imaging system with multiwaveform excitation. IEEE Trans Instrum Meas 73:1–11. https://doi.org/10.1109/TIM.2024.3450917
Top CB, Gungor A (2020) Tomographic field free line magnetic particle imaging with an open-sided scanner configuration. IEEE Trans Med Imaging 39:4164–4173. https://doi.org/10.1109/TMI.2020.3014197
Zhang P, Liu J, Li Y et al (2023) Dual-feature frequency component compression method for accelerating reconstruction in magnetic particle imaging. IEEE Trans Comput Imaging 9:289–297. https://doi.org/10.1109/TCI.2023.3255787
Li Y, Hui H, Zhang P et al (2023) Modified jiles-atherton model for dynamic magnetization in x-space magnetic particle imaging. IEEE Trans Biomed Eng 70:2035–2045. https://doi.org/10.1109/TBME.2023.3234256
Shi G, Yin L, An Y et al (2023) Progressive pretraining network for 3D system matrix calibration in magnetic particle imaging. IEEE Trans Med Imaging 42:3639–3650. https://doi.org/10.1109/TMI.2023.3297173
Wang Q, Ma X, Liao H et al (2020) Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 14:2053–2062. https://doi.org/10.1021/acsnano.9b08660
Article CAS PubMed Google Scholar
Tong W, Zhang Y, Hui H et al (2023) Sensitive magnetic particle imaging of haemoglobin degradation for the detection and monitoring of intraplaque haemorrhage in atherosclerosis. EBioMedicine 90:104509. https://doi.org/10.1016/j.ebiom.2023.104509
Hui H, Liu J, Zhang H et al (2023) In Vivo measurement of cerebral SPIO concentration in nonhuman primate using magnetic particle imaging detector. IEEE Magn Lett 14:1–5. https://doi.org/10.1109/LMAG.2023.3281933
Ludewig P, Gdaniec N, Sedlacik J et al (2017) Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 11:10480–10488. https://doi.org/10.1021/acsnano.7b05784
Article CAS PubMed Google Scholar
Wei Z, Liu Y, Liu S et al (2024) First nonhuman primate-sized magnetic particle imaging system based on digital-scanned focus Field. IEEE Trans Instrum Meas 73:1–11. https://doi.org/10.1109/TIM.2024.3418109
Rezaei B, Wei Tay Z, Mostufa S et al (2024) Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. Nanoscale 16:11802–11824. https://doi.org/10.1039/D4NR01195C
Article CAS PubMed Google Scholar
Yeo KH, Rodrigo I, Kuo R, Chandrasekharan P, Fellows B, Conolly S (2022) Characterizing the performance of commercial magnetic particles for magnetic particle imaging. Int J Mag Part Imag 8:Suppl 1. https://doi.org/10.18416/IJMPI.2022.2203080
Yin L, Li W, Bian Z et al (2023) A Streamlined 3-D magnetic particle imaging system with a two-stage excitation feed-through compensation strategy. IEEE Trans Instrum Meas 72:1–10. https://doi.org/10.1109/TIM.2023.3328682
Rahmer J, Weizenecker J, Gleich B, Borgert J (2012) Analysis of a 3-D system function measured for magnetic particle imaging. IEEE Trans Med Imaging 31:1289–1299. https://doi.org/10.1109/TMI.2012.2188639
Shen Y, Hu C, Zhang P et al (2022) A novel software framework for magnetic particle imaging reconstruction. Int J Imaging Syst Technol 32:1119–1132. https://doi.org/10.1002/ima.22707
Yang L, Han B, Zhang Z et al (2020) Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation 142:556–574. https://doi.org/10.1161/CIRCULATIONAHA.120.045765
Article CAS PubMed Google Scholar
Zhang Z, Wang S, Du L et al (2021) A pilot behavioural and neuroimaging investigation on photothrombotic stroke models in rhesus monkeys. J Neurosci Methods 362:109291. https://doi.org/10.1016/j.jneumeth.2021.109291
Zhang H, Japee S, Stacy A et al (2020) Anterior superior temporal sulcus is specialized for non-rigid facial motion in both monkeys and humans. Neuroimage 218:116878. https://doi.org/10.1016/j.neuroimage.2020.116878
Lv ZM, Zhao RJ, Zhi XS, Huang Y, Chen JY, Song NN, Su CJ, Ding YQ (2018) Expression of DCX and transcription factor profiling in photothrombosis-induced focal ischemia in Mice. Front Cellul Neurosci 22:455. https://doi.org/10.3389/fncel.2018.00455
Bijsterbosch MK, Duursma AM, Bouma JMW, Gruber M (1981) The plasma volume of the Wistar rat in relation to the body weight. Experientia 37:381–382. https://doi.org/10.1007/BF01959874
Article CAS PubMed Google Scholar
Graeser M, Ludewig P, Szwargulski P et al (2020) Design of a head coil for high resolution mouse brain perfusion imaging using magnetic particle imaging. Phys Med Biol 65:235007. https://doi.org/10.1088/1361-6560/abc09e
Article CAS PubMed Google Scholar
Bente K, Weber M, Graeser M et al (2015) Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging. IEEE Trans Med Imaging 34:644–651. https://doi.org/10.1109/TMI.2014.2364891
Paysen H, Wells J, Kosch O, Steinhoff U, Franke J, Trahms L, Schaeffter T, Wiekhorst F (2018) Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging. Phys Med Biol 63:13NT02. https://doi.org/10.1088/1361-6560/aacb87
Graeser M, Thieben F, Szwargulski P et al (2019) Human-sized magnetic particle imaging for brain applications. Nat Commun 10:1936. https://doi.org/10.1038/s41467-019-09704-x
Mohn F, Knopp T, Boberg M, Thieben F, Szwargulski P, Graeser M (2022) System matrix based reconstruction for pulsed sequences in magnetic particle imaging. IEEE Trans Med Imaging 41:1862–1873. https://doi.org/10.1109/TMI.2022.3149583
Shang Y, Liu J, Liu Y et al (2023) Anisotropic edge-preserving network for resolution enhancement in unidirectional Cartesian magnetic particle imaging. Phys Med Biol 68:045014. https://doi.org/10.1088/1361-6560/acb584
Shang Y, Liu J, Zhang L et al (2022) Deep learning for improving the spatial resolution of magnetic particle imaging. Phys Med Biol 67:125012. https://doi.org/10.1088/1361-6560/ac6e24
Sanders T, Konkle J, Sehl OC et al (2025) A physics-based computational forward model for efficient image reconstruction in magnetic particle imaging. IEEE Trans Med Imaging 44:2319–2329. https://doi.org/10.1109/TMI.2025.3530316
Lindner T, Bolar DS, Achten E et al (2023) Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 89:2024–2047. https://doi.org/10.1002/mrm.29572
Article PubMed PubMed Central Google Scholar
Huang R, Zhang L, Deng L, Fang J-O (2025) Diagnostic and prediction value of synthetic magnetic resonance imaging in acute ischemic stroke patients. Adv Clin Exp Med 34:179–186. https://doi.org/10.17219/acem/185496
Rahman A, Chowdhury MEH, Wadud MSI et al (2025) Deep learning-driven segmentation of ischemic stroke lesions using multi-channel MRI. Biomed Signal Process Control 105:107676.
Comments (0)