In vivo Multimodal Magnetic Particle Imaging for Early Detection of Ischemic Stroke in Tree Shrews

Ding Q, Liu S, Yao Y et al (2022) Global, regional, and national burden of ischemic stroke, 1990–2019. Neurology 98:e279–e290. https://doi.org/10.1212/WNL.0000000000013115

Article  PubMed  Google Scholar 

Pu L, Wang L, Zhang R et al (2023) Projected global trends in ischemic stroke incidence, deaths and disability-adjusted life years from 2020 to 2030. Stroke 54:1330–1339. https://doi.org/10.1161/STROKEAHA.122.040073

Article  PubMed  Google Scholar 

Wang T, Li C, Li S, Tang P, Guo Q, Fang L (2024) High-resolution magnetic resonance imaging features of time-of-flight magnetic resonance angiography signal loss and its relevance to ischemic stroke. Quantitat Imag Med Surg 14:6820-6829. https://doi.org/10.21037/qims-24-329

You SH, Kim B, Kim BK, Suh SI (2018) MR Imaging for differentiating contrast staining from hemorrhagic transformation after endovascular thrombectomy in acute ischemic stroke: phantom and patient study. Am J Neuroradiol 39:2313–2319. https://doi.org/10.3174/ajnr.A5848

Yao YG, Lu L, Ni RJ et al (2024) Study of tree shrew biology and models: a booming and prosperous field for biomedical research. Zool Res 45:877–909. https://doi.org/10.24272/j.issn.2095-8137.2024.199

Ye MS, Zhang JY, Yu DD et al (2021) Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing. Zool Res 42:692–709. https://doi.org/10.24272/j.issn.2095-8137.2021.272

Li H, Xiang BL, Li X et al (2023) Cognitive deficits and Alzheimer’s disease-like pathologies in the aged Chinese tree shrew. Mol Neurobiol 61:1892–1906. https://doi.org/10.1007/s12035-023-03663-7

Xu L, Yu DD, Ma YH et al (2020) COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zool Res 41:517–526. https://doi.org/10.24272/j.issn.2095-8137.2020.053

Wang YY, Niu RZ, Wang JD et al (2019) Establishment of brain ischemia model in tree shrew. Brain Res 1718:194–200. https://doi.org/10.1016/j.brainres.2019.05.011

Essig M, Nguyen TB, Shiroishi MS et al (2013) Perfusion MRI: the five most frequently asked clinical questions. Am J Roentgenol 201:W495–W510. https://doi.org/10.2214/AJR.12.9544

Article  Google Scholar 

Molad JA, Findler M, Auriel E (2017) Computed tomography perfusion-based decision making for acute ischemic stroke—missing the mismatch. J Stroke Cerebrovasc Dis 26:e78–e79. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.03.001

Article  CAS  PubMed  Google Scholar 

Leung TW, Wong KSL (2009) Thrombolysis with alteplase for acute ischemic stroke: safe and effective outside the 3-hour time window? Nat Rev Neurol 5:70–71. https://doi.org/10.1038/ncpneuro0993

Article  CAS  Google Scholar 

Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217. https://doi.org/10.1038/nature03808

Article  CAS  PubMed  Google Scholar 

Yin L, Li W, Du Y et al (2022) Recent developments of the reconstruction in magnetic particle imaging. Vis Comput Ind Biomed Art 5:24. https://doi.org/10.1186/s42492-022-00120-5

Zhang B, Zhang H, Gao P et al (2024) Magnetic field strength encoded handheld magnetic particle imaging system with multiwaveform excitation. IEEE Trans Instrum Meas 73:1–11. https://doi.org/10.1109/TIM.2024.3450917

Article  Google Scholar 

Top CB, Gungor A (2020) Tomographic field free line magnetic particle imaging with an open-sided scanner configuration. IEEE Trans Med Imaging 39:4164–4173. https://doi.org/10.1109/TMI.2020.3014197

Article  PubMed  Google Scholar 

Zhang P, Liu J, Li Y et al (2023) Dual-feature frequency component compression method for accelerating reconstruction in magnetic particle imaging. IEEE Trans Comput Imaging 9:289–297. https://doi.org/10.1109/TCI.2023.3255787

Li Y, Hui H, Zhang P et al (2023) Modified jiles-atherton model for dynamic magnetization in x-space magnetic particle imaging. IEEE Trans Biomed Eng 70:2035–2045. https://doi.org/10.1109/TBME.2023.3234256

Article  PubMed  Google Scholar 

Shi G, Yin L, An Y et al (2023) Progressive pretraining network for 3D system matrix calibration in magnetic particle imaging. IEEE Trans Med Imaging 42:3639–3650. https://doi.org/10.1109/TMI.2023.3297173

Wang Q, Ma X, Liao H et al (2020) Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 14:2053–2062. https://doi.org/10.1021/acsnano.9b08660

Article  CAS  PubMed  Google Scholar 

Tong W, Zhang Y, Hui H et al (2023) Sensitive magnetic particle imaging of haemoglobin degradation for the detection and monitoring of intraplaque haemorrhage in atherosclerosis. EBioMedicine 90:104509. https://doi.org/10.1016/j.ebiom.2023.104509

Hui H, Liu J, Zhang H et al (2023) In Vivo measurement of cerebral SPIO concentration in nonhuman primate using magnetic particle imaging detector. IEEE Magn Lett 14:1–5. https://doi.org/10.1109/LMAG.2023.3281933

Article  Google Scholar 

Ludewig P, Gdaniec N, Sedlacik J et al (2017) Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 11:10480–10488. https://doi.org/10.1021/acsnano.7b05784

Article  CAS  PubMed  Google Scholar 

Wei Z, Liu Y, Liu S et al (2024) First nonhuman primate-sized magnetic particle imaging system based on digital-scanned focus Field. IEEE Trans Instrum Meas 73:1–11. https://doi.org/10.1109/TIM.2024.3418109

Article  Google Scholar 

Rezaei B, Wei Tay Z, Mostufa S et al (2024) Magnetic nanoparticles for magnetic particle imaging (MPI): design and applications. Nanoscale 16:11802–11824. https://doi.org/10.1039/D4NR01195C

Article  CAS  PubMed  Google Scholar 

Yeo KH, Rodrigo I, Kuo R, Chandrasekharan P, Fellows B, Conolly S (2022) Characterizing the performance of commercial magnetic particles for magnetic particle imaging. Int J Mag Part Imag 8:Suppl 1. https://doi.org/10.18416/IJMPI.2022.2203080

Yin L, Li W, Bian Z et al (2023) A Streamlined 3-D magnetic particle imaging system with a two-stage excitation feed-through compensation strategy. IEEE Trans Instrum Meas 72:1–10. https://doi.org/10.1109/TIM.2023.3328682

Article  Google Scholar 

Rahmer J, Weizenecker J, Gleich B, Borgert J (2012) Analysis of a 3-D system function measured for magnetic particle imaging. IEEE Trans Med Imaging 31:1289–1299. https://doi.org/10.1109/TMI.2012.2188639

Article  PubMed  Google Scholar 

Shen Y, Hu C, Zhang P et al (2022) A novel software framework for magnetic particle imaging reconstruction. Int J Imaging Syst Technol 32:1119–1132. https://doi.org/10.1002/ima.22707

Article  Google Scholar 

Yang L, Han B, Zhang Z et al (2020) Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation 142:556–574. https://doi.org/10.1161/CIRCULATIONAHA.120.045765

Article  CAS  PubMed  Google Scholar 

Zhang Z, Wang S, Du L et al (2021) A pilot behavioural and neuroimaging investigation on photothrombotic stroke models in rhesus monkeys. J Neurosci Methods 362:109291. https://doi.org/10.1016/j.jneumeth.2021.109291

Article  PubMed  Google Scholar 

Zhang H, Japee S, Stacy A et al (2020) Anterior superior temporal sulcus is specialized for non-rigid facial motion in both monkeys and humans. Neuroimage 218:116878. https://doi.org/10.1016/j.neuroimage.2020.116878

Article  PubMed  Google Scholar 

Lv ZM, Zhao RJ, Zhi XS, Huang Y, Chen JY, Song NN, Su CJ, Ding YQ (2018) Expression of DCX and transcription factor profiling in photothrombosis-induced focal ischemia in Mice. Front Cellul Neurosci 22:455. https://doi.org/10.3389/fncel.2018.00455

Bijsterbosch MK, Duursma AM, Bouma JMW, Gruber M (1981) The plasma volume of the Wistar rat in relation to the body weight. Experientia 37:381–382. https://doi.org/10.1007/BF01959874

Article  CAS  PubMed  Google Scholar 

Graeser M, Ludewig P, Szwargulski P et al (2020) Design of a head coil for high resolution mouse brain perfusion imaging using magnetic particle imaging. Phys Med Biol 65:235007. https://doi.org/10.1088/1361-6560/abc09e

Article  CAS  PubMed  Google Scholar 

Bente K, Weber M, Graeser M et al (2015) Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging. IEEE Trans Med Imaging 34:644–651. https://doi.org/10.1109/TMI.2014.2364891

Article  PubMed  Google Scholar 

Paysen H, Wells J, Kosch O, Steinhoff U, Franke J, Trahms L, Schaeffter T, Wiekhorst F (2018) Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging. Phys Med Biol 63:13NT02. https://doi.org/10.1088/1361-6560/aacb87

Graeser M, Thieben F, Szwargulski P et al (2019) Human-sized magnetic particle imaging for brain applications. Nat Commun 10:1936. https://doi.org/10.1038/s41467-019-09704-x

Mohn F, Knopp T, Boberg M, Thieben F, Szwargulski P, Graeser M (2022) System matrix based reconstruction for pulsed sequences in magnetic particle imaging. IEEE Trans Med Imaging 41:1862–1873. https://doi.org/10.1109/TMI.2022.3149583

Shang Y, Liu J, Liu Y et al (2023) Anisotropic edge-preserving network for resolution enhancement in unidirectional Cartesian magnetic particle imaging. Phys Med Biol 68:045014. https://doi.org/10.1088/1361-6560/acb584

Article  Google Scholar 

Shang Y, Liu J, Zhang L et al (2022) Deep learning for improving the spatial resolution of magnetic particle imaging. Phys Med Biol 67:125012. https://doi.org/10.1088/1361-6560/ac6e24

Article  Google Scholar 

Sanders T, Konkle J, Sehl OC et al (2025) A physics-based computational forward model for efficient image reconstruction in magnetic particle imaging. IEEE Trans Med Imaging 44:2319–2329. https://doi.org/10.1109/TMI.2025.3530316

Lindner T, Bolar DS, Achten E et al (2023) Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 89:2024–2047. https://doi.org/10.1002/mrm.29572

Article  PubMed  PubMed Central  Google Scholar 

Huang R, Zhang L, Deng L, Fang J-O (2025) Diagnostic and prediction value of synthetic magnetic resonance imaging in acute ischemic stroke patients. Adv Clin Exp Med 34:179–186. https://doi.org/10.17219/acem/185496

Article  PubMed  Google Scholar 

Rahman A, Chowdhury MEH, Wadud MSI et al (2025) Deep learning-driven segmentation of ischemic stroke lesions using multi-channel MRI. Biomed Signal Process Control 105:107676.

Comments (0)

No login
gif