Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589
CAS PubMed PubMed Central Google Scholar
Keereweer S, Van Driel PBAA, Snoeks TJA, Kerrebijn JDF, de Baatenburg Jong RJ, Vahrmeijer AL et al (2013) Optical image-guided cancer surgery: challenges and limitations. Clin Cancer Res 19(14):3745–54
Nijboer TS, van der Fels CAM, de Wit JG, Keizers B, Huizinga HK, Voskuil FJ et al (2024) Fluorescence-guided surgery using cetuximab-800CW in patients with penile carcinoma. BJU Int 134(2):268–275
Stone LD, Kasten BB, Rao S, Gonzalez ML, Stevens TM, Lin D et al (2024) Interim phase II results using panitumumab-IRDye800CW during transoral robotic surgery in patients with oropharyngeal cancer. Clin Cancer Res 30(18):4016–4028
CAS PubMed PubMed Central Google Scholar
Xenaki KT, Oliveira S, van Bergen EnHenegouwen PMP (2017) Antibody or antibody fragments: Implications for molecular imaging and targeted therapy of solid tumors. Front Immunol 8:1287
PubMed PubMed Central Google Scholar
Bates A, Power CA, David VS (2019) Goliath: The structure, function, and clinical prospects of antibody fragments. Antibodies (Basel) 8(2):28
Nani RR, Shaum JB, Gorka AP, Schnermann MJ (2015) Electrophile-integrating smiles rearrangement provides previously inaccessible C4’-O-alkyl heptamethine cyanine fluorophores. Org Lett 17(2):302–305
CAS PubMed PubMed Central Google Scholar
Sato K, Nagaya T, Nakamura Y, Harada T, Nani RR, Shaum JB et al (2015) Impact of C4’-O-alkyl linker on in vivo pharmacokinetics of near-infrared cyanine/monoclonal antibody conjugates. Mol Pharm 12(9):3303–3311
CAS PubMed PubMed Central Google Scholar
Sato K, Gorka AP, Nagaya T, Michie MS, Nakamura Y, Nani RR et al (2016) Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Mol Biosyst 12(10):3046–3056
CAS PubMed PubMed Central Google Scholar
Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640
CAS PubMed PubMed Central Google Scholar
Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79
Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634
Ieda N, Takakura H, Maeta H, Ohira T, Tsuchiya K, Nakajima K et al (2024) Investigation of the substituent effect of indocyanine green derivatives for lymph imaging. Bioorg Med Chem 110(117824):117824
Štacková L, Štacko P, Klán P (2019) Approach to a substituted heptamethine cyanine chain by the ring opening of Zincke salts. J Am Chem Soc 141(17):7155–7162
Matsuoka D, Watanabe H, Shimizu Y, Kimura H, Yagi Y, Kawai R et al (2018) Structure-activity relationships of succinimidyl-Cys-C(O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-specific membrane antigen. Bioorg Med Chem 26(9):2291–2301
Zhou Y, Kim Y-S, Milenic DE, Baidoo KE, Brechbiel MW (2014) In vitro and in vivo analysis of indocyanine green-labeled panitumumab for optical imaging-a cautionary tale. Bioconjug Chem 25(10):1801–1810
CAS PubMed PubMed Central Google Scholar
Choi HS, Nasr K, Alyabyev S, Feith D, Lee JH, Kim SH et al (2011) Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew Chem Int Ed Engl 50(28):6258–6263
CAS PubMed PubMed Central Google Scholar
Hamann FM, Brehm R, Pauli J, Grabolle M, Frank W, Kaiser WA et al (2011) Controlled modulation of serum protein binding and biodistribution of asymmetric cyanine dyes by variation of the number of sulfonate groups. Mol Imaging 10(4):258–269
Hensbergen AW, de Kleer MAC, Boutkan MS, van Willigen DM, van der Wijk FA, Welling MM et al (2020) Evaluation of asymmetric orthogonal cyanine fluorophores. Dyes Pigm 183(108712):108712
Li C, Greenwood TR, Bhujwalla ZM, Glunde K (2006) Synthesis and characterization of glucosamine-bound near-infrared probes for optical imaging. Org Lett 8(17):3623–3626
Baker KJ (1966) Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins. Proc Soc Exp Biol Med 122(4):957–963
Terasaki H, Inoue Y, Sugano N, Jibiki M, Kudo T, Lepäntalo M et al (2013) A quantitative method for evaluating local perfusion using indocyanine green fluorescence imaging. Ann Vasc Surg 27(8):1154–1161
Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79
Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885
Li Y, Dai C, Hua Z, Xia L, Ding Y, Wang Q et al (2024) A human serum albumin-indocyanine green complex offers improved tumor identification in fluorescence-guided surgery. Transl Cancer Res 13(1):437–452
PubMed PubMed Central Google Scholar
Kosaka N, Mitsunaga M, Longmire MR, Choyke PL, Kobayashi H (2011) Near infrared fluorescence-guided real-time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. Int J Cancer 129(7):1671–1677
CAS PubMed PubMed Central Google Scholar
Cohen R, Stammes MA, de Roos IH, Stigter-van Walsum M, Visser GW, van Dongen GA (2011) Inert coupling of IRDye800CW to monoclonal antibodies for clinical optical imaging of tumor targets. EJNMMI Res 1(1):31
PubMed PubMed Central Google Scholar
Conner KP, Rock BM, Kwon GK, Balthasar JP, Abuqayyas L, Wienkers LC et al (2014) Evaluation of near infrared fluorescent labeling of monoclonal antibodies as a tool for tissue distribution. Drug Metab Dispos 42(11):1906–1913
PubMed PubMed Central Google Scholar
Burvenich IJG, Schoonooghe S, Blanckaert P, Bacher K, Vervoort L, Coene E et al (2007) Biodistribution and planar gamma camera imaging of (123)I- and (131)I-labeled F(ab’)(2) and Fab fragments of monoclonal antibody 14C5 in nude mice bearing an A549 lung tumor. Nucl Med Biol 34(3):257–265
Yamasaki Y, Sumimoto K, Nishikawa M, Yamashita F, Yamaoka K, Hashida M et al (2002) Pharmacokinetic analysis of in vivo disposition of succinylated proteins targeted to liver nonparenchymal cells via scavenger receptors: importance of molecular size and negative charge density for in vivo recognition by receptors. J Pharmacol Exp Ther 301(2):467–477
Alford PB, Xue Y, Thai SF, Shackelford RE (1998) Maleylated-BSA enhances production of nitric oxide from macrophages. Biochem Biophys Res Commun 245(1):185–189
Stockand JD, Sansom SC (1997) Regulation of filtration rate by glomerular mesangial cells in health and diabetic renal disease. Am J Kidney Dis 29(6):971–981
Comments (0)