The impact of mitokine MOTS-c administration on the soleus muscle of rats subjected to a 7-day hindlimb suspension

Alessi DR, Andjelkovic M, Caudwell B et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. https://doi.org/10.1002/j.1460-2075.1996.tb01045.x. 15:

Article  PubMed  PubMed Central  Google Scholar 

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88

Baehr LM, West DWD, Marshall AG et al (2017) Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. J Appl Physiol 122:1336–1350. https://doi.org/10.1152/JAPPLPHYSIOL.00703.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bajotto G, Sato Y, Kitaura Y, Shimomura Y (2011) Effect of branched-chain amino acid supplementation during unloading on regulatory components of protein synthesis in atrophied soleus muscles. Eur J Appl Physiol 111. https://doi.org/10.1007/s00421-010-1825-8

Belova SP, Zaripova K, Sharlo K et al (2022) Metformin attenuates an increase of calcium-dependent and ubiquitin-proteasome markers in unloaded muscle. J Appl Physiol 133:1149–1163. https://doi.org/10.1152/JAPPLPHYSIOL.00415.2022

Article  CAS  PubMed  Google Scholar 

Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of Rapamycin (mTOR) signaling. J Biol Chem 277:23977–23980. https://doi.org/10.1074/jbc.C200171200

Article  CAS  PubMed  Google Scholar 

Brownsey RW, Boone AN, Elliott JE et al (2006) Regulation of acetyl-CoA carboxylase. Biochem Soc Trans 34:223–227. https://doi.org/10.1042/BST20060223

Article  CAS  PubMed  Google Scholar 

Burke RE, Levine DN, Salcman M, Tsairis P (1974) Motor units in Cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol 238:503. https://doi.org/10.1113/JPHYSIOL.1974.SP010540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desplanches D, Mayet MH, Sempore B, Flandrois R (1987) Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol 63. https://doi.org/10.1152/jappl.1987.63.2.558

Ferrando AA, Lane HW, Stuart CA et al (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol. https://doi.org/10.1152/AJPENDO.1996.270.4.E627. 270:

Article  PubMed  Google Scholar 

Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184. https://doi.org/10.1113/jphysiol.1966.sp007909

Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an Energy-Sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201. https://doi.org/10.1016/J.TCB.2015.10.013

Article  CAS  PubMed  Google Scholar 

Herbert ME, Roy RR, Edgerton VR (1988) Influence of one-week hindlimb suspension and intermittent high load exercise on rat muscles. Exp Neurol 102:190–198. https://doi.org/10.1016/0014-4886(88)90093-3

Article  CAS  PubMed  Google Scholar 

Il’in EA, Novikov VE (1980) Stand for modelling the physiological effects of weightlessness in laboratory experiments with rats. Kosm Biol Aviakosm Med 14:79–80

Google Scholar 

Jiang J, Chang X, Nie Y et al (2021) Peripheral administration of a Cell-Penetrating MOTS-c analogue enhances memory and attenuates Aβ1-42- or LPS-Induced memory impairment through inhibiting neuroinflammation. ACS Chem Neurosci 12:1506–1518. https://doi.org/10.1021/ACSCHEMNEURO.0C00782/SUPPL_FILE/CN0C00782_SI_001.PDF

Article  CAS  PubMed  Google Scholar 

Kumagai H, Coelho AR, Wan J et al (2021) MOTS-c reduces myostatin and muscle atrophy signaling. Am J Physiol - Endocrinol Metab 320:E680–E690. https://doi.org/10.1152/AJPENDO.00275.2020/ASSET/IMAGES/LARGE/AJPENDO.00275.2020-F0008.JPEG.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumagai H, Natsume T, Kim SJ et al (2022) The MOTS-c K14Q polymorphism in the MtDNA is associated with muscle fiber composition and muscular performance. Biochim Biophys Acta Gen Subj 1866. https://doi.org/10.1016/J.BBAGEN.2021.130048

Kumagai H, Kim S-J, Miller B et al (2024) Mitochondrial-derived microprotein MOTS-c attenuates immobilization-induced skeletal muscle atrophy by suppressing lipid infiltration. https://doi.org/10.1152/ajpendo.00285.2023. https://doi.org/10.1152/AJPENDO.00285.2023

Lee C, Zeng J, Drew BG et al (2015) The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 21:443–454. https://doi.org/10.1016/j.cmet.2015.02.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lehman JJ, Barger PM, Kovacs A et al (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856. https://doi.org/10.1172/JCI10268

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millward DJ, Garlick PJ, James WPT et al (1973) Relationship between protein synthesis and RNA content in skeletal muscle. Nat 1973 2415386 241:204–205. https://doi.org/10.1038/241204a0

Article  Google Scholar 

Mirzoev T, Tyganov S, Vilchinskaya N et al (2016) Key markers of mTORC1-Dependent and mTORC1-Independent signaling pathways regulating protein synthesis in rat soleus muscle during early stages of hindlimb unloading. Cell Physiol Biochem 39. https://doi.org/10.1159/000447808

Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367–1377. https://doi.org/10.1152/JAPPLPHYSIOL.00969.2001

Article  PubMed  Google Scholar 

Netreba AI, Khusnutdinova DR, Vinogradova OL, Kozlovskaya IB (2004) Effect of dry immersion in combination with stimulation of foot support zones upon muscle force-velocity characteristics. J Gravit Physiol 11

Ohira Y, Yasui W, Kariya F et al (1994) Metabolic adaptation of skeletal muscles to gravitational unloading. Acta Astronaut 33:113–117. https://doi.org/10.1016/0094-5765(94)90115-5

Article  CAS  PubMed  Google Scholar 

Ohira Y, Yoshinaga T, Nomura T et al (2002) Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. Adv Sp Res 30:777–781. https://doi.org/10.1016/S0273-1177(02)00395-2

Article  CAS  Google Scholar 

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:E45. https://doi.org/10.1093/NAR/29.9.E45

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pierotti DJ, Roy RR, Flores V, Edgerton VR (1990) Influence of 7 days of hindlimb suspension and intermittent weight support on rat muscle mechanical properties. Aviat Space Environ Med 61:205–210

CAS  PubMed  Google Scholar 

Powers SK, Lynch GS, Murphy KT et al (2016) Disease-Induced skeletal muscle atrophy and fatigue. Med Sci Sports Exerc 48:2307–2319. https://doi.org/10.1249/MSS.0000000000000975

Article  PubMed  PubMed Central  Google Scholar 

Reynolds JC, Lai RW, Woodhead JST et al (2021) MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun 12. https://doi.org/10.1038/S41467-020-20790-0

Röckl KSC, Hirshman MF, Brandauer J et al (2007) Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 56:2062–2069. https://doi.org/10.2337/DB07-0255

Article  PubMed  Google Scholar 

Rommel C, Bodine SC, Clarke BA et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by Pl(3)K/Alt/mTOR and Pl(3)K/Akt/GSK3 pathways. Nat Cell Biol 3. https://doi.org/10.1038/ncb1101-1009

Roy RR, Baldwin KM, Edgerton VR (1991) The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc Sport Sci Rev 19

Roy RR, Zhong H, Monti RJ et al (2002) Mechanical properties of the electrically silent adult rat soleus muscle. Muscle Nerve 26. https://doi.org/10.1002/mus.10219

Rozhkov SV, Sharlo KA, Mirzoev TM, Shenkman BS (2021) Temporal changes in the markers of ribosome biogenesis in rat soleus muscle under simulated microgravity. Acta Astronaut 186:252–258. https://doi.org/10.1016/J.ACTAASTRO.2021.05.036

Article  Google Scholar 

Rozhkov SV, Sharlo KA, Shenkman BS, Mirzoev TM (2022) The role of glycogen synthase Kinase-3 in the regulation of ribosome biogenesis in rat soleus muscle under disuse conditions. Int J Mol Sci 2022 23:232751. https://doi.org/10.3390/IJMS23052751

Article  Google Scholar 

Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. https://doi.org/10.1186/2044-5040-1-4. Skelet Muscle 1:

Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531. https://doi.org/10.1152/PHYSREV.00031.2010

Article  CAS  PubMed  Google Scholar 

Sergeeva XV, Lvova ID, Sharlo KA (2024) Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024, Vol 25, Page 4984 25:4984. https://doi.org/10.3390/IJMS25094984

Sharlo KA, Paramonova II, Lvova ID et al (2020) NO-Dependent mechanisms of myosin heavy chain transcription regulation in rat soleus muscle after 7-Days hindlimb unloading. https://doi.org/10.3389/fphys.2020.00814. Front Physiol 11:

Sharlo KA, Paramonova II, Lvova ID et al (2021) Plantar mechanical stimulation maintains slow myosin expression in disused rat soleus muscle via NO-Dependent signaling. Int J Mol Sci 22:1–23. https://doi.org/10.3390/IJMS22031372

Article  Google Scholar 

Sharlo KA, Lvova ID, Belova SP et al (2023a) Metformin attenuates Slow-to-Fast Fiber shift and proteolysis markers increase in rat soleus after 7 days of rat hindlimb unloading. Int J Mol Sci 24.

Comments (0)

No login
gif