Alessi DR, Andjelkovic M, Caudwell B et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. https://doi.org/10.1002/j.1460-2075.1996.tb01045.x. 15:
Article PubMed PubMed Central Google Scholar
Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88
Baehr LM, West DWD, Marshall AG et al (2017) Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. J Appl Physiol 122:1336–1350. https://doi.org/10.1152/JAPPLPHYSIOL.00703.2016
Article CAS PubMed PubMed Central Google Scholar
Bajotto G, Sato Y, Kitaura Y, Shimomura Y (2011) Effect of branched-chain amino acid supplementation during unloading on regulatory components of protein synthesis in atrophied soleus muscles. Eur J Appl Physiol 111. https://doi.org/10.1007/s00421-010-1825-8
Belova SP, Zaripova K, Sharlo K et al (2022) Metformin attenuates an increase of calcium-dependent and ubiquitin-proteasome markers in unloaded muscle. J Appl Physiol 133:1149–1163. https://doi.org/10.1152/JAPPLPHYSIOL.00415.2022
Article CAS PubMed Google Scholar
Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of Rapamycin (mTOR) signaling. J Biol Chem 277:23977–23980. https://doi.org/10.1074/jbc.C200171200
Article CAS PubMed Google Scholar
Brownsey RW, Boone AN, Elliott JE et al (2006) Regulation of acetyl-CoA carboxylase. Biochem Soc Trans 34:223–227. https://doi.org/10.1042/BST20060223
Article CAS PubMed Google Scholar
Burke RE, Levine DN, Salcman M, Tsairis P (1974) Motor units in Cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol 238:503. https://doi.org/10.1113/JPHYSIOL.1974.SP010540
Article CAS PubMed PubMed Central Google Scholar
Desplanches D, Mayet MH, Sempore B, Flandrois R (1987) Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol 63. https://doi.org/10.1152/jappl.1987.63.2.558
Ferrando AA, Lane HW, Stuart CA et al (1996) Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am J Physiol. https://doi.org/10.1152/AJPENDO.1996.270.4.E627. 270:
Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184. https://doi.org/10.1113/jphysiol.1966.sp007909
Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an Energy-Sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201. https://doi.org/10.1016/J.TCB.2015.10.013
Article CAS PubMed Google Scholar
Herbert ME, Roy RR, Edgerton VR (1988) Influence of one-week hindlimb suspension and intermittent high load exercise on rat muscles. Exp Neurol 102:190–198. https://doi.org/10.1016/0014-4886(88)90093-3
Article CAS PubMed Google Scholar
Il’in EA, Novikov VE (1980) Stand for modelling the physiological effects of weightlessness in laboratory experiments with rats. Kosm Biol Aviakosm Med 14:79–80
Jiang J, Chang X, Nie Y et al (2021) Peripheral administration of a Cell-Penetrating MOTS-c analogue enhances memory and attenuates Aβ1-42- or LPS-Induced memory impairment through inhibiting neuroinflammation. ACS Chem Neurosci 12:1506–1518. https://doi.org/10.1021/ACSCHEMNEURO.0C00782/SUPPL_FILE/CN0C00782_SI_001.PDF
Article CAS PubMed Google Scholar
Kumagai H, Coelho AR, Wan J et al (2021) MOTS-c reduces myostatin and muscle atrophy signaling. Am J Physiol - Endocrinol Metab 320:E680–E690. https://doi.org/10.1152/AJPENDO.00275.2020/ASSET/IMAGES/LARGE/AJPENDO.00275.2020-F0008.JPEG.
Article CAS PubMed PubMed Central Google Scholar
Kumagai H, Natsume T, Kim SJ et al (2022) The MOTS-c K14Q polymorphism in the MtDNA is associated with muscle fiber composition and muscular performance. Biochim Biophys Acta Gen Subj 1866. https://doi.org/10.1016/J.BBAGEN.2021.130048
Kumagai H, Kim S-J, Miller B et al (2024) Mitochondrial-derived microprotein MOTS-c attenuates immobilization-induced skeletal muscle atrophy by suppressing lipid infiltration. https://doi.org/10.1152/ajpendo.00285.2023. https://doi.org/10.1152/AJPENDO.00285.2023
Lee C, Zeng J, Drew BG et al (2015) The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 21:443–454. https://doi.org/10.1016/j.cmet.2015.02.009
Article CAS PubMed PubMed Central Google Scholar
Lehman JJ, Barger PM, Kovacs A et al (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856. https://doi.org/10.1172/JCI10268
Article CAS PubMed PubMed Central Google Scholar
Millward DJ, Garlick PJ, James WPT et al (1973) Relationship between protein synthesis and RNA content in skeletal muscle. Nat 1973 2415386 241:204–205. https://doi.org/10.1038/241204a0
Mirzoev T, Tyganov S, Vilchinskaya N et al (2016) Key markers of mTORC1-Dependent and mTORC1-Independent signaling pathways regulating protein synthesis in rat soleus muscle during early stages of hindlimb unloading. Cell Physiol Biochem 39. https://doi.org/10.1159/000447808
Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92:1367–1377. https://doi.org/10.1152/JAPPLPHYSIOL.00969.2001
Netreba AI, Khusnutdinova DR, Vinogradova OL, Kozlovskaya IB (2004) Effect of dry immersion in combination with stimulation of foot support zones upon muscle force-velocity characteristics. J Gravit Physiol 11
Ohira Y, Yasui W, Kariya F et al (1994) Metabolic adaptation of skeletal muscles to gravitational unloading. Acta Astronaut 33:113–117. https://doi.org/10.1016/0094-5765(94)90115-5
Article CAS PubMed Google Scholar
Ohira Y, Yoshinaga T, Nomura T et al (2002) Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. Adv Sp Res 30:777–781. https://doi.org/10.1016/S0273-1177(02)00395-2
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:E45. https://doi.org/10.1093/NAR/29.9.E45
Article CAS PubMed PubMed Central Google Scholar
Pierotti DJ, Roy RR, Flores V, Edgerton VR (1990) Influence of 7 days of hindlimb suspension and intermittent weight support on rat muscle mechanical properties. Aviat Space Environ Med 61:205–210
Powers SK, Lynch GS, Murphy KT et al (2016) Disease-Induced skeletal muscle atrophy and fatigue. Med Sci Sports Exerc 48:2307–2319. https://doi.org/10.1249/MSS.0000000000000975
Article PubMed PubMed Central Google Scholar
Reynolds JC, Lai RW, Woodhead JST et al (2021) MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun 12. https://doi.org/10.1038/S41467-020-20790-0
Röckl KSC, Hirshman MF, Brandauer J et al (2007) Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 56:2062–2069. https://doi.org/10.2337/DB07-0255
Rommel C, Bodine SC, Clarke BA et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by Pl(3)K/Alt/mTOR and Pl(3)K/Akt/GSK3 pathways. Nat Cell Biol 3. https://doi.org/10.1038/ncb1101-1009
Roy RR, Baldwin KM, Edgerton VR (1991) The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc Sport Sci Rev 19
Roy RR, Zhong H, Monti RJ et al (2002) Mechanical properties of the electrically silent adult rat soleus muscle. Muscle Nerve 26. https://doi.org/10.1002/mus.10219
Rozhkov SV, Sharlo KA, Mirzoev TM, Shenkman BS (2021) Temporal changes in the markers of ribosome biogenesis in rat soleus muscle under simulated microgravity. Acta Astronaut 186:252–258. https://doi.org/10.1016/J.ACTAASTRO.2021.05.036
Rozhkov SV, Sharlo KA, Shenkman BS, Mirzoev TM (2022) The role of glycogen synthase Kinase-3 in the regulation of ribosome biogenesis in rat soleus muscle under disuse conditions. Int J Mol Sci 2022 23:232751. https://doi.org/10.3390/IJMS23052751
Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. https://doi.org/10.1186/2044-5040-1-4. Skelet Muscle 1:
Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531. https://doi.org/10.1152/PHYSREV.00031.2010
Article CAS PubMed Google Scholar
Sergeeva XV, Lvova ID, Sharlo KA (2024) Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024, Vol 25, Page 4984 25:4984. https://doi.org/10.3390/IJMS25094984
Sharlo KA, Paramonova II, Lvova ID et al (2020) NO-Dependent mechanisms of myosin heavy chain transcription regulation in rat soleus muscle after 7-Days hindlimb unloading. https://doi.org/10.3389/fphys.2020.00814. Front Physiol 11:
Sharlo KA, Paramonova II, Lvova ID et al (2021) Plantar mechanical stimulation maintains slow myosin expression in disused rat soleus muscle via NO-Dependent signaling. Int J Mol Sci 22:1–23. https://doi.org/10.3390/IJMS22031372
Sharlo KA, Lvova ID, Belova SP et al (2023a) Metformin attenuates Slow-to-Fast Fiber shift and proteolysis markers increase in rat soleus after 7 days of rat hindlimb unloading. Int J Mol Sci 24.
Comments (0)