Influence of neuromuscular transmission and Na channel inhibitors on strength-duration relationship in isolated slow- and fast-twitch muscles

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007

Article  PubMed  CAS  Google Scholar 

Balice-Gordon RJ, Thompson WJ (1988) The organization and development of compartmentalized innervation in rat extensor digitorum longus muscle. J Physiol 398:211–231. https://doi.org/10.1113/jphysiol.1988.sp017039

Article  PubMed  PubMed Central  CAS  Google Scholar 

Buckett WR, Marjoribanks CE, Marwick FA, Morton MB (1968) The pharmacology of pancuronium bromide (Org.NA97), a new potent steroidal neuromuscular blocking agent. Br J Pharmacol Chemother 32:671–682. https://doi.org/10.1111/j.1476-5381.1968.tb00466.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cairns SP, Renaud JM (2023) The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue. J Physiol. https://doi.org/10.1113/JP285129

Article  PubMed  Google Scholar 

Cairns SP, Chin ER, Renaud JM (2007) Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue. J Appl Physiol 103:359–368. https://doi.org/10.1152/japplphysiol.01267.2006

Article  PubMed  Google Scholar 

Cairns SP, Taberner AJ, Loiselle DS (2009) Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle. J Appl Physiol 106:101–112. https://doi.org/10.1152/japplphysiol.90878.2008

Article  PubMed  Google Scholar 

Dutka TL, Murphy RM, Stephenson DG, Lamb GD (2008) Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue. J Physiol 586:875–887. https://doi.org/10.1113/jphysiol.2007.144667

Article  PubMed  CAS  Google Scholar 

Enoka RM, Rankin LL, Stuart DG, Volz KA (1989) Fatigability of rat hindlimb muscle: associations between electromyogram and force during a fatigue test. J Physiol 408:251–270. https://doi.org/10.1113/jphysiol.1989.sp017458

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gong B, Legault D, Miki T, Seino S, Renaud JM (2003) KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle. Am J Physiol Cell Physiol 285:C1464-1474. https://doi.org/10.1152/ajpcell.00278.2003

Article  PubMed  CAS  Google Scholar 

Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141. https://doi.org/10.1007/BF00581062

Article  PubMed  CAS  Google Scholar 

Jensen R, Nielsen J, Ortenblad N (2020) Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J Physiol 598:789–803. https://doi.org/10.1113/JP278543

Article  PubMed  CAS  Google Scholar 

Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflugers Arch 406:458–463. https://doi.org/10.1007/BF00583367

Article  PubMed  CAS  Google Scholar 

Kawai S, Takagi Y, Kaneko S, Kurosawa T (2011) Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp Anim 60:481–487

PubMed  CAS  Google Scholar 

Kelly SS, Gertler RA, Robbins N (1986) Comparison of the effects of pancuronium and tubocurarine on different muscles of young and old mice. Br J Anaesth 58:909–914. https://doi.org/10.1093/bja/58.8.909

Article  PubMed  CAS  Google Scholar 

Kuriyama H, Mekata F (1971) Biophysical properties of the longitudinal smooth muscle of the guinea-pig rectum. J Physiol 212:667–683. https://doi.org/10.1113/jphysiol.1971.sp009349

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lamb GD, Stephenson DG (2018) Measurement of force and calcium release using mechanically skinned fibers from mammalian skeletal muscle. J Appl Physiol 125:1105–1127. https://doi.org/10.1152/japplphysiol.00445.2018

Article  PubMed  CAS  Google Scholar 

Milton RL, Lupa MT, Caldwell JH (1992) Fast and slow twitch skeletal muscle fibres differ in their distribution of Na channels near the endplate. Neurosci Lett 135:41–44. https://doi.org/10.1016/0304-3940(92)90131-p

Article  PubMed  CAS  Google Scholar 

Ogata T (1988) Structure of motor endplates in the different fiber types of vertebrate skeletal muscles. Arch Histol Cytol 51:385–424. https://doi.org/10.1679/aohc.51.385

Article  PubMed  CAS  Google Scholar 

Padykula HA, Gauthier GF (1970) The ultrastructure of the neuromuscular junctions of mammalian red, white, and intermediate skeletal muscle fibers. J Cell Biol 46:27–41. https://doi.org/10.1083/jcb.46.1.27

Article  PubMed  PubMed Central  CAS  Google Scholar 

Papponen H, Kaisto T, Myllyla VV, Myllyla R, Metsikko K (2005) Regulated sarcolemmal localization of the muscle-specific ClC-1 chloride channel. Exp Neurol 191:163–173. https://doi.org/10.1016/j.expneurol.2004.07.018

Article  PubMed  CAS  Google Scholar 

Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG (2004) Intracellular acidosis enhances the excitability of working muscle. Science 305:1144–1147. https://doi.org/10.1126/science.1101141

Article  PubMed  CAS  Google Scholar 

Pedersen TH, Macdonald WA, Broch-Lips M, Halldorsdottir O, Baekgaard Nielsen O (2021) Chloride channel inhibition improves neuromuscular function under conditions mimicking neuromuscular disorders. Acta Physiol 233:e13690. https://doi.org/10.1111/apha.13690

Article  CAS  Google Scholar 

Peker T, Gulekon N, Coskun ZK, Omeroglu S (2013) Investigation of the nerve distribution pattern of leg muscles in rat. Anat Sci Int 88:83–90. https://doi.org/10.1007/s12565-012-0169-3

Article  PubMed  Google Scholar 

Rannou F, Droguet M, Giroux-Metges MA, Pennec Y, Gioux M, Pennec JP (2009) Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres. J Physiol 587:5249–5258. https://doi.org/10.1113/jphysiol.2009.176446

Article  PubMed  PubMed Central  CAS  Google Scholar 

Renaud JM, Ortenblad N, McKenna MJ, Overgaard K (2023) Exercise and fatigue: integrating the role of K+, Na+ and Cl- in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol. https://doi.org/10.1007/s00421-023-05270-9

Article  PubMed  PubMed Central  Google Scholar 

Rich MM, Pinter MJ (2003) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547:555–566. https://doi.org/10.1113/jphysiol.2002.035188

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ruff RL (1996) Single-channel basis of slow inactivation of Na+ channels in rat skeletal muscle. Am J Physiol 271:C971-981

PubMed  CAS  Google Scholar 

Ruff RL, Whittlesey D (1992) Na+ current densities and voltage dependence in human intercostal muscle fibres. J Physiol 458:85–97. https://doi.org/10.1113/jphysiol.1992.sp019407

Article  PubMed  PubMed Central  CAS  Google Scholar 

Comments (0)

No login
gif