Myoblast and fibroblast derived small extracellular vesicles differentially affect myoblast migration dynamics

Aswad H, Jalabert A, Rome S (2016) Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnol 16:32

PubMed  PubMed Central  Google Scholar 

Avalos PN, Forsthoefel DJ (2022) An emerging frontier in intercellular communication: extracellular vesicles in regeneration. Front Cell Dev Biol 10:849905

PubMed  PubMed Central  Google Scholar 

Badosa C, Roldán M, Fernández-Irigoyen J, Santamaria E, Jimenez-Mallebrera C (2023) Proteomic and functional characterisation of extracellular vesicles from collagen VI deficient human fibroblasts reveals a role in cell motility. Sci Rep 13:14622

PubMed  PubMed Central  CAS  Google Scholar 

Byun SE, Sim C, Chung Y, Kim HK, Park S, Kim DK, Cho S, Lee S (2021) Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells. Curr Issues Mol Biol 43:1473–1488

PubMed  PubMed Central  CAS  Google Scholar 

Ceafalan LC, Popescu BO, Hinescu ME (2014) Cellular players in skeletal muscle regeneration. Biomed Res Int 2014:957014

PubMed  PubMed Central  Google Scholar 

Chapman MA, Meza R, Lieber RL (2016) Skeletal muscle fibroblasts in health and disease. Differentiation 92:108–115

PubMed  PubMed Central  CAS  Google Scholar 

Chen Y, Douanne N, Wu T, Kaur I, Tsering T, Erzingatzian A, Nadeau A, Juncker D, Nerguizian V, Burnier JV (2025) Leveraging nature’s nanocarriers: translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. Sci Adv 11:eads5249

PubMed  PubMed Central  CAS  Google Scholar 

Choi JS, Yoon HI, Lee KS, Choi YC, Yang SH, Kim IS, Cho YW (2016) Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release 222:107–115

PubMed  CAS  Google Scholar 

Daaboul GG, Gagni P, Benussi L, Bettotti P, Ciani M, Cretich M, Freedman DS, Ghidoni R, Ozkumur AY, Piotto C, Prosperi D, Santini B, Ünlü MS, Chiari M (2016) Digital detection of exosomes by interferometric imaging. Sci Rep 6:37246

PubMed  PubMed Central  CAS  Google Scholar 

de Gasperi R, Hamidi S, Harlow LM, Ksiezak-Reding H, Bauman WA, Cardozo CP (2017) Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep 7:12888

PubMed  PubMed Central  Google Scholar 

El Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

PubMed  Google Scholar 

El Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP (2000) In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res 258:279–287

PubMed  Google Scholar 

Fodor J, Gomba-Tóth A, Oláh T, Almássy J, Zádor E, Csernoch L (2017) Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. J Muscle Res Cell Motil 38:215–229

PubMed  CAS  Google Scholar 

Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, de Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Couté Y, Rome S (2014a) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One 9:e84153

PubMed  PubMed Central  Google Scholar 

Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon A, Errazuriz E, Lefai E, Vidal H, Rome S (2014b) Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle 13:78–89

PubMed  CAS  Google Scholar 

Fry CS, Kirby TJ, Kosmac K, McCarthy JJ, Peterson CA (2017) Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell 20:56–69

PubMed  CAS  Google Scholar 

Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 264:112–126

PubMed  CAS  Google Scholar 

Gangadaran P, Oh E, Rajendran RL, Kim H, Oh J, Kwak S, Hong CM, Choi K, Chung H, Ahn B-C (2022) Identification of angiogenic cargoes in human fibroblasts-derived extracellular vesicles and induction of wound healing. Pharmaceuticals 15:702

PubMed  PubMed Central  CAS  Google Scholar 

Goetsch K, Snyman C, Myburgh K, Niesler C (2014) ROCK-2 is associated with focal adhesion maturation during myoblast migration. J Cell Biochem. https://doi.org/10.1002/jcb.24784

PubMed  Google Scholar 

Guescini M, Maggio S, Ceccaroli P, Battistelli M, Annibalini G, Piccoli G, Sestili P, Stocchi V (2017) Extracellular vesicles released by oxidatively injured or intact C2C12 myotubes promote distinct responses converging toward myogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms18112488

Han X, Wu P, Li L, Sahal HM, Ji C, Zhang J, Wang Y, Wang Q, Qian H, Shi H, Xu W (2021) Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell Cycle 20:616–629

PubMed  PubMed Central  CAS  Google Scholar 

Han Q-F, Li W-J, Hu K-S, Gao J, Zhai W-L, Yang J-H, Zhang S-J (2022) Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol Cancer 21:207

PubMed  PubMed Central  Google Scholar 

Hettinger ZR, Kargl CK, Shannahan JH, Kuang S, Gavin TP (2021) Extracellular vesicles released from stress-induced prematurely senescent myoblasts impair endothelial function and proliferation. Exp Physiol 106:2083–2095

PubMed  CAS  Google Scholar 

Iyer SR, Scheiber AL, Yarowsky P, Henn RF, Otsuru S, Lovering RM (2020) Exosomes isolated from platelet-rich plasma and mesenchymal stem cells promote recovery of function after muscle injury. Am J Sports Med 48:2277–2286

PubMed  Google Scholar 

Ji S, Ma P, Cao X, Wang J, Yu X, Luo X, Lu J, Hou W, Zhang Z, Yan Y, Dong Y, Wang H (2022) Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio 12:2213–2226

PubMed  PubMed Central  CAS  Google Scholar 

Kar P, Agnihotri SK, Sharma A, Sachan R, Bhatt ML, Sachdev M (2015) A Novel Methodology for Stripping and Reprobing of Western Blots Originally Developed with Colorimetric Substrate TMB. In: Kurien BT, Scofield RH (eds) Detection of blotted proteins: methods and protocols. Springer New York, New York, NY

Kim S, Lee MJ, Choi JY, Park DH, Kwak HB, Moon S, Koh JW, Shin HK, Ryu JK, Park CS, Park JH, Kang JH (2018) Roles of exosome-like vesicles released from inflammatory C2C12 myotubes: regulation of myocyte differentiation and myokine expression. Cell Physiol Biochem 48:1829–1842

PubMed  CAS  Google Scholar 

Lautaoja JH, Pekkala S, Pasternack A, Laitinen M, Ritvos O, Hulmi JJ (2020) Differentiation of murine C2C12 myoblasts strongly reduces the effects of myostatin on intracellular signaling. Biomolecules 10. https://doi.org/10.3390/biom10050695

PubMed  PubMed Central  Google Scholar 

Lesmana R, Goenawan H, Tarawan V, Setiawan I, Hidayat ACE, Supratman U (2019) Short communication: Optimazing culture and differentiation L6 cell, C2C12 cell and primary myoblast cells culture. Cell Biol Dev 2

Lischnig A, Bergqvist M, Ochiya T, Lässer C (2022) Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Mol Cell Proteomics 21:100273

PubMed  PubMed Central  CAS  Google Scholar 

Lovett JAC, Durcan PJ, Myburgh KH (2018) Investigation of circulating extracellular vesicle microRNA following two consecutive bouts of muscle-damaging exercise. Front Physiol 9:1149

PubMed  PubMed Central  Google Scholar 

Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW (2021) Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 13:1762–1782

PubMed  PubMed Central  Google Scholar 

Mackey AL, Magnan M, Chazaud B, Kjaer M (2017) Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol 595:5115–5127

PubMed  PubMed Central  CAS  Google Scholar 

Mendias CL (2017) Fibroblasts take the centre stage in human skeletal muscle regeneration. J Physiol 595:5005

PubMed  PubMed Central  CAS  Google Scholar 

Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

PubMed  PubMed Central  CAS  Google Scholar 

Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589:1257–1265

PubMed  CAS  Google Scholar 

Obi PO, Souza TFG, Özerkliğ B, Seif S, Bydak B, Klassen N, Duhamel TA, West AR, Gordon JW, Saleem A (2025) Extracellular vesicles released from skeletal muscle post-chronic contractile activity increase mitochondrial biogenesis in recipient myoblasts. J Extracell Vesicles 14:e70045

PubMed  PubMed Central  CAS 

Comments (0)

No login
gif