Aswad H, Jalabert A, Rome S (2016) Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnol 16:32
PubMed PubMed Central Google Scholar
Avalos PN, Forsthoefel DJ (2022) An emerging frontier in intercellular communication: extracellular vesicles in regeneration. Front Cell Dev Biol 10:849905
PubMed PubMed Central Google Scholar
Badosa C, Roldán M, Fernández-Irigoyen J, Santamaria E, Jimenez-Mallebrera C (2023) Proteomic and functional characterisation of extracellular vesicles from collagen VI deficient human fibroblasts reveals a role in cell motility. Sci Rep 13:14622
PubMed PubMed Central CAS Google Scholar
Byun SE, Sim C, Chung Y, Kim HK, Park S, Kim DK, Cho S, Lee S (2021) Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells. Curr Issues Mol Biol 43:1473–1488
PubMed PubMed Central CAS Google Scholar
Ceafalan LC, Popescu BO, Hinescu ME (2014) Cellular players in skeletal muscle regeneration. Biomed Res Int 2014:957014
PubMed PubMed Central Google Scholar
Chapman MA, Meza R, Lieber RL (2016) Skeletal muscle fibroblasts in health and disease. Differentiation 92:108–115
PubMed PubMed Central CAS Google Scholar
Chen Y, Douanne N, Wu T, Kaur I, Tsering T, Erzingatzian A, Nadeau A, Juncker D, Nerguizian V, Burnier JV (2025) Leveraging nature’s nanocarriers: translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. Sci Adv 11:eads5249
PubMed PubMed Central CAS Google Scholar
Choi JS, Yoon HI, Lee KS, Choi YC, Yang SH, Kim IS, Cho YW (2016) Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J Control Release 222:107–115
Daaboul GG, Gagni P, Benussi L, Bettotti P, Ciani M, Cretich M, Freedman DS, Ghidoni R, Ozkumur AY, Piotto C, Prosperi D, Santini B, Ünlü MS, Chiari M (2016) Digital detection of exosomes by interferometric imaging. Sci Rep 6:37246
PubMed PubMed Central CAS Google Scholar
de Gasperi R, Hamidi S, Harlow LM, Ksiezak-Reding H, Bauman WA, Cardozo CP (2017) Denervation-related alterations and biological activity of miRNAs contained in exosomes released by skeletal muscle fibers. Sci Rep 7:12888
PubMed PubMed Central Google Scholar
El Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357
El Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP (2000) In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res 258:279–287
Fodor J, Gomba-Tóth A, Oláh T, Almássy J, Zádor E, Csernoch L (2017) Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. J Muscle Res Cell Motil 38:215–229
Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, de Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Couté Y, Rome S (2014a) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One 9:e84153
PubMed PubMed Central Google Scholar
Forterre A, Jalabert A, Chikh K, Pesenti S, Euthine V, Granjon A, Errazuriz E, Lefai E, Vidal H, Rome S (2014b) Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation. Cell Cycle 13:78–89
Fry CS, Kirby TJ, Kosmac K, McCarthy JJ, Peterson CA (2017) Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell 20:56–69
Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 264:112–126
Gangadaran P, Oh E, Rajendran RL, Kim H, Oh J, Kwak S, Hong CM, Choi K, Chung H, Ahn B-C (2022) Identification of angiogenic cargoes in human fibroblasts-derived extracellular vesicles and induction of wound healing. Pharmaceuticals 15:702
PubMed PubMed Central CAS Google Scholar
Goetsch K, Snyman C, Myburgh K, Niesler C (2014) ROCK-2 is associated with focal adhesion maturation during myoblast migration. J Cell Biochem. https://doi.org/10.1002/jcb.24784
Guescini M, Maggio S, Ceccaroli P, Battistelli M, Annibalini G, Piccoli G, Sestili P, Stocchi V (2017) Extracellular vesicles released by oxidatively injured or intact C2C12 myotubes promote distinct responses converging toward myogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms18112488
Han X, Wu P, Li L, Sahal HM, Ji C, Zhang J, Wang Y, Wang Q, Qian H, Shi H, Xu W (2021) Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell Cycle 20:616–629
PubMed PubMed Central CAS Google Scholar
Han Q-F, Li W-J, Hu K-S, Gao J, Zhai W-L, Yang J-H, Zhang S-J (2022) Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol Cancer 21:207
PubMed PubMed Central Google Scholar
Hettinger ZR, Kargl CK, Shannahan JH, Kuang S, Gavin TP (2021) Extracellular vesicles released from stress-induced prematurely senescent myoblasts impair endothelial function and proliferation. Exp Physiol 106:2083–2095
Iyer SR, Scheiber AL, Yarowsky P, Henn RF, Otsuru S, Lovering RM (2020) Exosomes isolated from platelet-rich plasma and mesenchymal stem cells promote recovery of function after muscle injury. Am J Sports Med 48:2277–2286
Ji S, Ma P, Cao X, Wang J, Yu X, Luo X, Lu J, Hou W, Zhang Z, Yan Y, Dong Y, Wang H (2022) Myoblast-derived exosomes promote the repair and regeneration of injured skeletal muscle in mice. FEBS Open Bio 12:2213–2226
PubMed PubMed Central CAS Google Scholar
Kar P, Agnihotri SK, Sharma A, Sachan R, Bhatt ML, Sachdev M (2015) A Novel Methodology for Stripping and Reprobing of Western Blots Originally Developed with Colorimetric Substrate TMB. In: Kurien BT, Scofield RH (eds) Detection of blotted proteins: methods and protocols. Springer New York, New York, NY
Kim S, Lee MJ, Choi JY, Park DH, Kwak HB, Moon S, Koh JW, Shin HK, Ryu JK, Park CS, Park JH, Kang JH (2018) Roles of exosome-like vesicles released from inflammatory C2C12 myotubes: regulation of myocyte differentiation and myokine expression. Cell Physiol Biochem 48:1829–1842
Lautaoja JH, Pekkala S, Pasternack A, Laitinen M, Ritvos O, Hulmi JJ (2020) Differentiation of murine C2C12 myoblasts strongly reduces the effects of myostatin on intracellular signaling. Biomolecules 10. https://doi.org/10.3390/biom10050695
PubMed PubMed Central Google Scholar
Lesmana R, Goenawan H, Tarawan V, Setiawan I, Hidayat ACE, Supratman U (2019) Short communication: Optimazing culture and differentiation L6 cell, C2C12 cell and primary myoblast cells culture. Cell Biol Dev 2
Lischnig A, Bergqvist M, Ochiya T, Lässer C (2022) Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Mol Cell Proteomics 21:100273
PubMed PubMed Central CAS Google Scholar
Lovett JAC, Durcan PJ, Myburgh KH (2018) Investigation of circulating extracellular vesicle microRNA following two consecutive bouts of muscle-damaging exercise. Front Physiol 9:1149
PubMed PubMed Central Google Scholar
Luo ZW, Sun YY, Lin JR, Qi BJ, Chen JW (2021) Exosomes derived from inflammatory myoblasts promote M1 polarization and break the balance of myoblast proliferation/differentiation. World J Stem Cells 13:1762–1782
PubMed PubMed Central Google Scholar
Mackey AL, Magnan M, Chazaud B, Kjaer M (2017) Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration. J Physiol 595:5115–5127
PubMed PubMed Central CAS Google Scholar
Mendias CL (2017) Fibroblasts take the centre stage in human skeletal muscle regeneration. J Physiol 595:5005
PubMed PubMed Central CAS Google Scholar
Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637
PubMed PubMed Central CAS Google Scholar
Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589:1257–1265
Obi PO, Souza TFG, Özerkliğ B, Seif S, Bydak B, Klassen N, Duhamel TA, West AR, Gordon JW, Saleem A (2025) Extracellular vesicles released from skeletal muscle post-chronic contractile activity increase mitochondrial biogenesis in recipient myoblasts. J Extracell Vesicles 14:e70045
Comments (0)