Cadmium removal and indole acetic acid production by ureolytic bacteria isolated from rhizosphere soils

Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng 37(10):1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008

Article  Google Scholar 

Adarme-Duran CA, Ágreda J, Brandão PFB, Castillo E (2024) Cadmium availability in rhizosphere and non-rhizosphere soils in Cacao farms in santander, Colombia. Environ Monit Assess 196(12):1254. https://doi.org/10.1007/s10661-024-13301-x

Article  CAS  PubMed Central  PubMed  Google Scholar 

Al Disi Z, Attia E, Ahmad MI, Zouari N (2022) Immobilization of heavy metals by microbially induced carbonate precipitation using hydrocarbon-degrading ureolytic bacteria. Biotechnol Rep 35:e00747. https://doi.org/10.1016/j.btre.2022.e00747

Article  CAS  Google Scholar 

Anand S, Kumar V, Singh A, Phukan D, Pandey N (2024) Statistical modelling, optimization, and mechanistic exploration of novel ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium immobilization under microbial inclusive and cell-free conditions through microbially induced calcite precipitation. Environ Pollut 348:123880. https://doi.org/10.1016/j.envpol.2024.123880

Article  CAS  PubMed  Google Scholar 

Bashir S, Javed S, Al-Anazi KM, Farah MA, Ali S (2022) Bioremediation of cadmium toxicity in wheat (Triticum aestivum L.) plants primed with L-Proline, Bacillus subtilis and Aspergillus Niger. Int J Environ Res Public Health 19(19):12683. https://doi.org/10.3390/ijerph191912683

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83. https://doi.org/10.1016/0003-2697(91)90120-I

Article  CAS  PubMed  Google Scholar 

Bhattacharya A, Naik SN, Khare SK (2018) Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). J Environ Manage 215:143–152. https://doi.org/10.1016/j.jenvman.2018.03.055

Article  CAS  PubMed  Google Scholar 

Bibi S, Oualha M, Ashfaq MY, Suleiman MT, Zouari N (2018) Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Adv 8(11):5854–5863. https://doi.org/10.1039/C7RA12758H

Article  CAS  PubMed Central  PubMed  Google Scholar 

Brandão PFB, Torimura M, Kurane R, Bull AT (2002) Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl Microbiol Biotechnol 58(1):77–83. https://doi.org/10.1007/s00253-001-0855-x

Article  CAS  PubMed  Google Scholar 

Bravo D, Braissant O (2022) Cadmium-tolerant bacteria: current trends and applications in agriculture. Lett Appl Microbiol 74(3):311–333. https://doi.org/10.1111/lam.13594

Article  CAS  PubMed  Google Scholar 

Bravo D, Leon-Moreno C, Martinez CA, Varon-Ramirez VM, Araujo-Carrillo GA, Vargas R, Quiroga-Mateus R, Zamora A, Rodriguez EAG (2021) The first National survey of cadmium in Cacao farm soil in Colombia. Agronomy 11(4):761. https://doi.org/10.3390/agronomy11040761

Article  CAS  Google Scholar 

Breakwell D, MacDonald B, Woolverton C, Smith K, Robison R (2007) Colony morphology protocol. American society for microbiology, 1–7. Available online: https://asm.org/ASM/media/Protocol-Images/Colony-Morphology-Protocol.pdf?ext=.pdf

Bunsangiam S, Thongpae N, Limtong S, Srisuk N (2021) Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci Rep 11(1):13094. https://doi.org/10.1038/s41598-021-92305-w

Article  CAS  PubMed Central  PubMed  Google Scholar 

Cai Q, Xu M, Ma J, Zhang X, Yang G, Long L, Chen C, Wu J, Song C, Xiao Y (2023) Improvement of cadmium immobilization in contaminated paddy soil by using ureolytic bacteria and rice straw. Sci Total Environ 874:162594. https://doi.org/10.1016/j.scitotenv.2023.162594

Article  CAS  PubMed  Google Scholar 

Carlos MHJ, Stefani PVY, Janette AM, Melani MSS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188:53–61. https://doi.org/10.1016/j.micres.2016.05.001

Article  CAS  PubMed  Google Scholar 

Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiu R (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82(6):1734–1744. https://doi.org/10.1128/AEM.03689-15

Article  CAS  PubMed Central  PubMed  Google Scholar 

Cheng C, Han H, Wang Y, He L, Sheng X (2020) Metal-immobilizing and urease-producing bacteria increase the biomass and reduce metal accumulation in potato tubers under field conditions. Ecotoxicol Environ Saf 203:111017. https://doi.org/10.1016/j.ecoenv.2020.111017

Article  CAS  PubMed  Google Scholar 

Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52(4):461–466

CAS  PubMed Central  PubMed  Google Scholar 

Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177(1):7–11. https://doi.org/10.1128/jb.52.4.461-466.1946

Article  CAS  PubMed Central  PubMed  Google Scholar 

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

Article  CAS  PubMed Central  PubMed  Google Scholar 

Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84. https://doi.org/10.1016/j.soilbio.2007.06.024

Article  CAS  Google Scholar 

Diez-Marulanda JC, Brandão PFB (2023) Isolation of urease-producing bacteria from cocoa farms soils in santander, colombia, for cadmium remediation. 3 Biotech 13(3):98. https://doi.org/10.1007/s13205-023-03495-1

Article  PubMed Central  PubMed  Google Scholar 

Diez-Marulanda JC, Brandão PFB (2024) Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. Environ Sci Pollut Res 31(4):5319–5330. https://doi.org/10.1007/s11356-023-31062-x

Article  CAS  Google Scholar 

Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced Inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25. https://doi.org/10.1016/j.chemosphere.2008.09.079

Article  CAS  PubMed  Google Scholar 

Duan C, Yu XY, Yao XW, Zhu JH, Li GY (2023) Coupling reinforcement of uranium tailings via Klebsiella-induced calcium carbonate precipitation and waterborne polyurethane. Constr Build Mater 400:132641. https://doi.org/10.1016/j.conbuildmat.2023.132641

Article  CAS  Google Scholar 

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

Article  CAS  PubMed Central  PubMed  Google Scholar 

Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191. https://doi.org/10.1016/j.ecoenv.2017.08.032

Article  CAS  PubMed  Google Scholar 

Fang L, Niu Q, Cheng L, Jiang J, Yu YY, Chu J, Achal V, You T (2021) Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii. Sci Total Environ 787:147627. https://doi.org/10.1016/j.scitotenv.2021.147627

Article  CAS 

Comments (0)

No login
gif