Achal V, Pan X, Zhang D (2011) Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol Eng 37(10):1601–1605. https://doi.org/10.1016/j.ecoleng.2011.06.008
Adarme-Duran CA, Ágreda J, Brandão PFB, Castillo E (2024) Cadmium availability in rhizosphere and non-rhizosphere soils in Cacao farms in santander, Colombia. Environ Monit Assess 196(12):1254. https://doi.org/10.1007/s10661-024-13301-x
Article CAS PubMed Central PubMed Google Scholar
Al Disi Z, Attia E, Ahmad MI, Zouari N (2022) Immobilization of heavy metals by microbially induced carbonate precipitation using hydrocarbon-degrading ureolytic bacteria. Biotechnol Rep 35:e00747. https://doi.org/10.1016/j.btre.2022.e00747
Anand S, Kumar V, Singh A, Phukan D, Pandey N (2024) Statistical modelling, optimization, and mechanistic exploration of novel ureolytic Enterobacter hormaechei IITISM-SA3 in cadmium immobilization under microbial inclusive and cell-free conditions through microbially induced calcite precipitation. Environ Pollut 348:123880. https://doi.org/10.1016/j.envpol.2024.123880
Article CAS PubMed Google Scholar
Bashir S, Javed S, Al-Anazi KM, Farah MA, Ali S (2022) Bioremediation of cadmium toxicity in wheat (Triticum aestivum L.) plants primed with L-Proline, Bacillus subtilis and Aspergillus Niger. Int J Environ Res Public Health 19(19):12683. https://doi.org/10.3390/ijerph191912683
Article CAS PubMed Central PubMed Google Scholar
Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83. https://doi.org/10.1016/0003-2697(91)90120-I
Article CAS PubMed Google Scholar
Bhattacharya A, Naik SN, Khare SK (2018) Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). J Environ Manage 215:143–152. https://doi.org/10.1016/j.jenvman.2018.03.055
Article CAS PubMed Google Scholar
Bibi S, Oualha M, Ashfaq MY, Suleiman MT, Zouari N (2018) Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Adv 8(11):5854–5863. https://doi.org/10.1039/C7RA12758H
Article CAS PubMed Central PubMed Google Scholar
Brandão PFB, Torimura M, Kurane R, Bull AT (2002) Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl Microbiol Biotechnol 58(1):77–83. https://doi.org/10.1007/s00253-001-0855-x
Article CAS PubMed Google Scholar
Bravo D, Braissant O (2022) Cadmium-tolerant bacteria: current trends and applications in agriculture. Lett Appl Microbiol 74(3):311–333. https://doi.org/10.1111/lam.13594
Article CAS PubMed Google Scholar
Bravo D, Leon-Moreno C, Martinez CA, Varon-Ramirez VM, Araujo-Carrillo GA, Vargas R, Quiroga-Mateus R, Zamora A, Rodriguez EAG (2021) The first National survey of cadmium in Cacao farm soil in Colombia. Agronomy 11(4):761. https://doi.org/10.3390/agronomy11040761
Breakwell D, MacDonald B, Woolverton C, Smith K, Robison R (2007) Colony morphology protocol. American society for microbiology, 1–7. Available online: https://asm.org/ASM/media/Protocol-Images/Colony-Morphology-Protocol.pdf?ext=.pdf
Bunsangiam S, Thongpae N, Limtong S, Srisuk N (2021) Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci Rep 11(1):13094. https://doi.org/10.1038/s41598-021-92305-w
Article CAS PubMed Central PubMed Google Scholar
Cai Q, Xu M, Ma J, Zhang X, Yang G, Long L, Chen C, Wu J, Song C, Xiao Y (2023) Improvement of cadmium immobilization in contaminated paddy soil by using ureolytic bacteria and rice straw. Sci Total Environ 874:162594. https://doi.org/10.1016/j.scitotenv.2023.162594
Article CAS PubMed Google Scholar
Carlos MHJ, Stefani PVY, Janette AM, Melani MSS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188:53–61. https://doi.org/10.1016/j.micres.2016.05.001
Article CAS PubMed Google Scholar
Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiu R (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82(6):1734–1744. https://doi.org/10.1128/AEM.03689-15
Article CAS PubMed Central PubMed Google Scholar
Cheng C, Han H, Wang Y, He L, Sheng X (2020) Metal-immobilizing and urease-producing bacteria increase the biomass and reduce metal accumulation in potato tubers under field conditions. Ecotoxicol Environ Saf 203:111017. https://doi.org/10.1016/j.ecoenv.2020.111017
Article CAS PubMed Google Scholar
Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52(4):461–466
CAS PubMed Central PubMed Google Scholar
Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177(1):7–11. https://doi.org/10.1128/jb.52.4.461-466.1946
Article CAS PubMed Central PubMed Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109
Article CAS PubMed Central PubMed Google Scholar
Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84. https://doi.org/10.1016/j.soilbio.2007.06.024
Diez-Marulanda JC, Brandão PFB (2023) Isolation of urease-producing bacteria from cocoa farms soils in santander, colombia, for cadmium remediation. 3 Biotech 13(3):98. https://doi.org/10.1007/s13205-023-03495-1
Article PubMed Central PubMed Google Scholar
Diez-Marulanda JC, Brandão PFB (2024) Potential use of two Serratia strains for cadmium remediation based on microbiologically induced carbonate precipitation and their cadmium resistance. Environ Sci Pollut Res 31(4):5319–5330. https://doi.org/10.1007/s11356-023-31062-x
Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced Inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25. https://doi.org/10.1016/j.chemosphere.2008.09.079
Article CAS PubMed Google Scholar
Duan C, Yu XY, Yao XW, Zhu JH, Li GY (2023) Coupling reinforcement of uranium tailings via Klebsiella-induced calcium carbonate precipitation and waterborne polyurethane. Constr Build Mater 400:132641. https://doi.org/10.1016/j.conbuildmat.2023.132641
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340
Article CAS PubMed Central PubMed Google Scholar
Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191. https://doi.org/10.1016/j.ecoenv.2017.08.032
Article CAS PubMed Google Scholar
Fang L, Niu Q, Cheng L, Jiang J, Yu YY, Chu J, Achal V, You T (2021) Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii. Sci Total Environ 787:147627. https://doi.org/10.1016/j.scitotenv.2021.147627
Comments (0)