Genome-Wide Screen using Keio knockout mutant line reveals genes related to the antimicrobial properties of trans-Cinnamic Acid

Alves MJ, Ferreira ICFR, Froufe HJC et al (2013) Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J Appl Microbiol 115:346–357. https://doi.org/10.1111/jam.12196

Article  PubMed  Google Scholar 

Anderson SE, Vadia SE, McKelvy J, Levin PA (2023) The transcription factor DksA exerts opposing effects on cell division depending on the presence of ppGpp. MBio 14. https://doi.org/10.1128/MBIO.02425-23

Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol Syst Biol 2:1–11. https://doi.org/10.1038/msb4100050

Article  Google Scholar 

Barka EA, Vatsa P, Sanchez L et al (2016) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/mmbr.00019-15

Article  PubMed  Google Scholar 

Bhatwalkar SB, Mondal R, Krishna SBN et al (2021) Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front Microbiol 12:1–20. https://doi.org/10.3389/fmicb.2021.613077

Article  Google Scholar 

Blasco F, Pommier J, Augier V et al (1992) Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Mol Microbiol 6:221–230. https://doi.org/10.1111/j.1365-2958.1992.tb02003.x

Article  PubMed  Google Scholar 

Blattner FR, Plunkett G, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science (80-) 277:1453–1462. https://doi.org/10.1126/science.277.5331.1453

Article  Google Scholar 

Braun V, Hancock REW, Hantke K, Hartmann A (1976) Functional organization of the outer membrane of Escherichia coli: Phage and colicin receptors as components of iron uptake systems. J Supramol Cell Biochem 5:37–58. https://doi.org/10.1002/jss.400050105

Article  Google Scholar 

Brown L, Gentry D, Elliott T, Cashel M (2002) DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 184:4455–4465. https://doi.org/10.1128/JB.184.16.4455-4465.2002

Article  PubMed  PubMed Central  Google Scholar 

Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62. https://doi.org/10.1128/CMR.19.1.50-62.2006

Article  PubMed  PubMed Central  Google Scholar 

Chae C, Sharma S, Hoskins JR, Wickner S (2004) CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM. J Biol Chem 279:33147–33153. https://doi.org/10.1074/jbc.M404862200

Article  PubMed  Google Scholar 

Chang ST, Chen PF, Chang SC (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77:123–127. https://doi.org/10.1016/S0378-8741(01)00273-2

Article  PubMed  Google Scholar 

Chater KF (2016) Recent advances in understanding streptomyces. F1000Research 5:2795. https://doi.org/10.12688/f1000research.9534.1

Article  PubMed  PubMed Central  Google Scholar 

Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, et al (2022) Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal 36. https://doi.org/10.1002/jcla.24655

Chuang SE, Blattner FR (1993) Characterization of twenty-six new heat shock genes of Escherichia coli. J Bacteriol 175:5242–5252. https://doi.org/10.1128/jb.175.16.5242-5252.1993

Article  PubMed  PubMed Central  Google Scholar 

Çöl B, Kürkçü MS, Di̇bek E (2024) Genome-Wide screens identify genes responsible for intrinsic boric acid resistance in Escherichia coli. Biol Trace Elem Res 202:5771–5793

PubMed  PubMed Central  Google Scholar 

Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. https://doi.org/10.1073/pnas.120163297

Article  PubMed  PubMed Central  Google Scholar 

De Boer M, Heuer C, Hussein H, McDougall S (2015) Minimum inhibitory concentrations of selected antimicrobials against Escherichia coli and Trueperella pyogenes of bovine uterine origin. J Dairy Sci 98:4427–4438. https://doi.org/10.3168/jds.2014-8890

Article  PubMed  Google Scholar 

Dibek E, Babayeva A, Elgin ES et al (2024) Genome-wide screen of Escherichia coli Keio mutant line identifies genes related to propolis effect. Eur Food Res Technol 251:429–448. https://doi.org/10.1007/s00217-024-04642-5

Article  Google Scholar 

Elgin ES, Çatav SS, Babayeva A et al (2023) NMR metabolomics analysis of Escherichia coli cells treated with Turkish propolis water extract reveals nucleic acid metabolism as the major target. J Appl Microbiol 134. https://doi.org/10.1093/JAMBIO/LXAC031

Fialová SB, Rendeková K, Mučaji P et al (2021a) Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering European legislation and folk medicine—A review. Int J Mol Sci 22:10746

Google Scholar 

Fialová SB, Rendeková K, Mučaji P et al (2021b) Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering European legislation and folk medicine—A review. Int J Mol Sci 22:10746. https://doi.org/10.3390/ijms221910746

Article  Google Scholar 

Froger A, Hall JE (2007) Transformation of Plasmid DNA into E. Coli using the heat shock method. J Vis Exp pe253. https://doi.org/10.3791/253

Fux CA, Shirtliff M, Stoodley P, Costerton JW (2005) Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol 13:58–63. https://doi.org/10.1016/j.tim.2004.11.001

Article  PubMed  Google Scholar 

Gao Y, Lim HG, Verkler H et al (2021) Unraveling the functions of uncharacterized transcription factors in Escherichia coli using ChIP-exo. Nucleic Acids Res 49:9696–9710. https://doi.org/10.1093/nar/gkab735

Article  PubMed  PubMed Central  Google Scholar 

Garcia-Ferrer I, Arêde P, Gómez-Blanco J et al (2015) Structural and functional insights into Escherichia coli α2 -macroglobulin endopeptidase snap-trap inhibition. Proc Natl Acad Sci U S A 112:8290–8295. https://doi.org/10.1073/pnas.1506538112

Article  PubMed  PubMed Central  Google Scholar 

George A (2018) Antimicrobial resistance, trade, food safety and security. One Heal 5:6–8. https://doi.org/10.1016/j.onehlt.2017.11.004

Article  Google Scholar 

Gould K (2016) Antibiotics: From prehistory to the present day. J Antimicrob Chemother 71:572–575

PubMed  Google Scholar 

Gray MJ (2019) Inorganic polyphosphate accumulation in Escherichia coli is regulated by DksA but not by (p)ppGpp. J Bacteriol 201. https://doi.org/10.1128/JB.00664-18

Gülcü B, Altın N (2024) Control potency of Trans-cinnamic acid and antifungal metabolites of Xenorhabdus szentirmaii against Alternaria brassicicola. Düzce Üniversitesi Bilim ve Teknol Derg 12:365–374. https://doi.org/10.29130/dubited.1233579

Article  Google Scholar 

Gur E, Biran D, Shechter N et al (2004) The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation. J Bacteriol 186:7236–7242. https://doi.org/10.1128/JB.186.21.7236-7242.2004

Article  PubMed  PubMed Central  Google Scholar 

Guzman JD (2014) Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 19:19292–19349. https://doi.org/10.3390/molecules191219292

Article  PubMed  PubMed Central  Google Scholar 

Hafizur RM, Hameed A, Shukrana M et al (2015) Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 22:297–300. https://doi.org/10.1016/j.phymed.2015.01.003

Article  PubMed  Google Scholar 

Hayashi K, Morooka N, Yamamoto Y et al (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:2006–7. https://doi.org/10.1038/msb4100049

Article  PubMed Central  Google Scholar 

Hengge-Aronis R, Fischer D (1992) Identification and molecular analysis of glgS, a novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli. Mol Microbiol 6:1877–1886. https://doi.org/10.1111/j.1365-2958.1992.tb01360.x

Article  PubMed  Google Scholar 

Holden ER, Yasir M, Turner AK et al (2022) Comparison of the genetic basis of biofilm formation between Salmonella Typhimurium and Escherichia coli. Microb Genomics 8. https://doi.org/10.1099/mgen.0.000885

Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

Article  PubMed  Google Scholar 

Hussain Y, Alam W, Ullah H et al (2022) Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics 11:322. https://doi.org/10.3390/antibiotics11030322

Article 

Comments (0)

No login
gif